

Efficient Availability Attacks against Supervised and Contrastive Learning Simultaneously

Availability Attacks for Data Protection

Data owner:

- Apply a kind of data poisoning attack
- Perturb each datum imperceptibly E.g., 8/255 in L_{∞} norm
- Publish the protected dataset D_p

Data collector:

- Only access to protected dataset D_p
- Train a model using D_p
- Employ model for unseen clean data

Protection performance:

For supervised learning on D_p , its test accuracy can be lower than random guess.

X Unauthorized data exploitation

Challenge from Contrastive Learning

What if the data collect traverse both supervised learning (SL) and contrastive **learning algorithms**?

Transferability is required for a reliable data protection tool.

Protection **efficiency** is essential for practical applications.

Yihan Wang, Yifan Zhu, Xiao-Shan Gao AMSS, Chinese Academy of Sciences

Pipeline

Blue flow shows the proposed approach.

Methodology

1. Mimic contrastive learning in supervised learning framework.

Apply contrastive-like data augmentations

- brightness, contrast, ^{2.0-} saturation, hue
- resized crop
- grayscale
- flip
- etc.

2. **Deceive** "augmented" supervised learning.

Augmented Unlearnable Examples (AUE) $\min_{x} \min_{x} E_D[L_{SL}(\mathcal{T}(x + \delta(x, y)), y; f)]$

Augmented Adversarial Poisoning (AAP) $\min_{\delta} E_D \Big[L_{SL} \Big(\mathcal{T} \big(x + \delta(x, y) \big), y + K; f^* \Big) \Big]$ $f^* \in \arg\min_{x} L_{SL}(\mathcal{T}(x), y; f)$ *s*.*t*.

Comparison

1. With non-augmented attacks

Our methods enlarge the accuracy drop of SimCLR.

Datasets	Clean	UE	AUE	AP	AAP
CIFAR-10	91.3	-2.3	-38.9	-42.9	-52.2
CIFAR-100	63.9	-3.9	-50.3	-38.3	-43.8

2. With contrastive learning-based approaches

Baseline methods rely on optimizing the contrastive loss, e.g., InfoNCE.

Our SL-based methods

- Use less memory
- Cost less generation time
- Are easier to optimize

- Att \mathbf{At} A A \mathbf{At}
- Att Alg
- SL CI

Experiments

1. Performance on CIFAR-10/100 and Tiny-ImageNet.

to also	CIFAR-10							
tacks	\mathbf{SL}	SimCLR	MoCo	BYOL	$\mathbf{SimSiam}$	Worst		
lone	95.5	91.3	91.5	92.3	90.7	95.5		
AP	9.6	41.5	31.5	44.0	42.8	44.0		
SEP	2.3	37.3	35.8	42.8	36.7	42.8		
CP	11.0	39.3	32.7	41.8	37.9	41.8		
ΓUE	10.1	57.2	51.6	60.1	58.5	60.1		
TP	14.8	31.4	54.1	61.8	30.7	61.8		
AAP	29.7	32.3	23.2	35.5	34.1	35.5		
AUE	18.9	52.4	57.0	58.2	34.5	58.6		

tooka	CIFAR-100							
lacks	\mathbf{SL}	SimCLR	MoCo	BYOL	$\mathbf{SimSiam}$	Worst		
None	77.4	63.9	67.9	63.7	64.4	77.4		
AP	3.2	25.6	26.6	26.1	28.8	28.8		
SEP	2.4	25.2	25.9	26.6	28.4	28.4		
CP	74.4	15.2	13.4	16.4	14.1	74.4		
ГUE	1.0	19.9	19.6	22.3	18.6	22.3		
TP	7.5	6.7	21.9	27.0	4.1	27.0		
AAP	7.3	20.1	18.6	21.1	21.3	21.3		
AUE	6.9	13.6	19.0	19.2	11.9	19.2		

	TINY-IMAGENET						
tacks	\mathbf{SL}	SimCLR	MoCo	BYOL	$\mathbf{SimSiam}$	Worst	
lone	53.5	39.6	43.3	33.9	42.4	53.5	
AP	11.3	32.8	34.7	27.2	34.5	34.7	
ГUE	8.5	13.3	15.9	13.4	14.1	15.9	
AUE	7.1	10.8	11.7	9.6	11.6	11.7	
AAP	18.7	28.4	27.6	25.2	28.2	28.4	

3. Time cost on CIFAR-10/100

4. More evaluation algorithms

tacks	CIFAR-10 k-NN SupCL FixMatch			CIFAR-100 k-NN SupCL FixMatch		
lean	88.9	94.6	95.7	55.2	72.5	77.0
AUE AAP	54.4 42.6	31.5 24.7	30.0 18.7	13.3 21.7	15.6 17.9	12.0 25.5

5. Architecture transferability

				4		
g.	Attacks	ResNet-50	VGG	DenseNet	MobileNet	ViT
	AUE AAP	16.4 8.9	23.2 10.7	19.5 10.4	17.2 12.1	33.4 33.0
	AUE AAP	53.4 41.5	48.2 41.7	50.5 35.3	41.4 29.8	45.1 40.2