Structured Learning of Compositional Sequential Interventions

 $Jialin Yu¹$ Andreas Koukorinis¹ Nicolò Colombo² Yuchen Zhu¹ Ricardo Silva¹

ROYAL OLLOWA'

¹ University College London, UK $^{-2}$ Royal Holloway, University of London, UK

NeurIPS 2024 (Vancouver, Canada)

Outline

[Motivation](#page-2-0)

[Problem](#page-3-0)

[Literature](#page-4-0)

[Problem statement](#page-5-0)

[Assumptions](#page-6-0)

[Algorithm](#page-7-0)

[Experiments](#page-8-0)

[Results](#page-9-0)

[Further Results](#page-10-0)

[Summary](#page-11-0)

Motivation

Real-world Scenarios

Daily music recommendation influence users' future listening behaviour (such as: no action, promote songs from musician "A" by 10% or demote songs from musician "B" by 20%).

Figure 1: Toy example of time series with different interventions.

Problem

- ▶ Consider a more complex setting where the treatments may take different values for a single individual over time, often refereed to as time-varying treatments [\[10\]](#page-14-0).
- \blacktriangleright How do we predict the effect of combinations of categorical action/intervention sequence in the future?

Challenges

- \triangleright Can be treated as a standard prediction problem (i.e. supervised sequential modelling with LSTM [\[11\]](#page-14-1), GRU [\[9\]](#page-14-2), Transformers [\[21\]](#page-16-0) etc.)
- ▶ Large categorical space, sparse interactions (mostly "default" action) and no-obvious structural assumptions between actions (in contrastive to distributed representations in natural language).

Literature

- ▶ Mostly used black-box models (LSTM, GRU and Transformers) or parametric models (often with strong Markovian assumptions [\[8,](#page-13-0) [20\]](#page-16-1)) on short sequence and small action space.
- ▶ Some research focused on large action space, but lack of compositional identification. [\[12,](#page-14-3) [15,](#page-15-0) [18,](#page-16-2) [19\]](#page-16-3)
- ▶ Other recent research deal with combinatorial categorical spaces [\[1,](#page-12-0) [5\]](#page-13-1), but lack of longitudinal component.
- ▶ This work focus on extrapolation of unseen interventions in sequential and compositional setting in the future.

Problem statement

- \blacktriangleright Individual user *n* with optional time-invariant features Z_n ;
- ▶ Time-series of user's behaviour $X_n^{1:T-1} := [X_n^1, \dots, X_n^{T-1}]$ and associated actions (interventions) $D_n^{1:T-1} := [D_n^1, \cdots D_n^{T-1}].$
- ▶ Predict future behavior $X_n^{T,T+\Delta} := [X_n^T, \ldots, X_n^{T+\Delta}]$ under (hypothetical) future actions $\text{do}(D_n^{1:T+\Delta}).$
- \triangleright We consider the case where sequential ignorability holds, by randomization or adjustment [\[16,](#page-15-1) [10\]](#page-14-0).

Within unit n , actions D_n^t interact with (latent) variable β_n to produce behavior X_n^t represented as a dense graphical model.

Assumptions

We assume behavioral measurements X_n^t have the following conditional mean factorisation for the regime $\text{do}(D_n^{1:t}),$

$$
\mathbb{E}[X_n^t | X_n^{1:t-1}, Z_n, \text{do}(D_n^{1:t})] = (\phi_n^t)^T (\beta_n \odot \psi_n^t) = \sum_{l=1}^r \phi_{nl}^t \beta_{nl} \psi_{nl}^t,
$$
\nwhere $\phi_{nl}^t := \phi_l(x_n^{1:t-1}, z_n)$ (evaluation of basis function) and
\n $\psi_{nl}^t := \prod_{t'=1}^t \psi_l(d_n^{t'}, t', t)$ (evaluation of sequential interventions).
\nWe choose $\psi_l(d, t', t) := \sigma(w_{1dl})^{t-t'} \times w_{2dl} + w_{3dl}$ (motivated by [6])

Inspiration

- ▶ Tensor Factorisation for Causal Imputation [\[3,](#page-12-1) [4,](#page-12-2) [2\]](#page-12-3).
- ▶ Functional analysis $f(x_a, x_b) \approx f_a^{\mathsf{T}}(x_a) f_b(x_b)$ (e.g. Proposition 1 [\[12\]](#page-14-3)).

Algorithm: CSI-VAE

We call our method *Compositional Sequential Intervention* Variational Autoencoder (CSI-VAE).

Statistical Inference

- \triangleright We optimize the (marginal) log-likelihood using a black-box amortized variational inference framework [\[13,](#page-14-4) [14,](#page-15-2) [17\]](#page-15-3).
- ▶ We use GRU model to approximate mean-field Gaussian posterior.
- \blacktriangleright The approximate posterior at time step t is thus $\mu_{\boldsymbol{q},\beta,n}:=\mathsf{MLP}(\mathsf{GRU}_{\eta_{\beta,\boldsymbol{1}}}(d_{n}^{1:t},\mathsf{x}_{n}^{1:t},z_{n})),$ and $\log \sigma_{q,\beta,n} := \text{MLP}(\widehat{\text{GRU}}_{\eta_{\beta,2}}(d_n^{1:t}, x_n^{1:t}, z_n)).$
- ▶ Prediction for $X_n^{T:T+\Delta}$ is done by sampling $M = 50$ trajectories and then use marginal Monte Carlo average.
- \blacktriangleright More details in paper.

Experiments

Data

- \blacktriangleright Fully synthetic data.
- ▶ Semi-synthetic Spotify data [\[7\]](#page-13-3).

CSI-VAE Models

- ▶ CSI-VAE-1: proposed model.
- \triangleright CSI-VAE-2: ablation, relaxed the product form of Eq. [\(1\)](#page-6-1).
- \triangleright CSI-VAE-3: ablation, relaxed the product form of ψ .

Baselines

- ▶ GRU-0: GRU uses $X_n^{1:T-1}$ and Z_n only.
- ▶ GRU-1: GRU uses $X_n^{1:T-1}$, D_n^{T-1} and Z_n only.
- ► GRU-2: GRU uses $X_n^{1:T-1}$, $D_n^{1:T-1}$ and Z_n .
- ► LSTM: LSTM uses $X_n^{1:T-1}$, $D_n^{1:T-1}$ and Z_n .
- ▶ Transformer: Transformer uses $X_n^{1:T-1}$, $D_n^{1:T-1}$ and Z_n .

Table 1: Main experimental results, averaged mean squared root error over five different seeds.

Further Results

Figure 2: Top: Fully-synthetic (left) and semi-synthetic Spotify (right). Bottom: How errors change as training sizes are increased.

Summary

- \triangleright The results show the superiority of our model against strong baselines.
- \triangleright We also observed that the structural assumptions are critical, as evidenced by the drop in performance for CSI-VAE 2 and 3.
- ▶ We show that even with more data provided, our model consistently outperforms the black-box models (cannot solve this problem by simply feeding in more data).

Take Away

- ▶ Embedding is important, but how to incorporate structures into embedding is more critical for generalisation.
- ▶ Black box models are powerful, but we can make it even more powerful with additional structural information.

References I

- [1] Abhineet Agarwal, Anish Agarwal, and Suhas Vijaykumar. Synthetic combinations: A causal inference framework for combinatorial interventions. Advances in Neural Information Processing Systems, 36:19195–19216, 2023.
- [2] Anish Agarwal, Munther Dahleh, Devavrat Shah, and Dennis Shen. Causal matrix completion. In The thirty sixth annual conference on learning theory, pages 3821–3826. PMLR, 2023.
- [3] Anish Agarwal, Devavrat Shah, and Dennis Shen. Synthetic interventions. arXiv preprint arXiv:2006.07691, 2020.
- [4] Susan Athey, Mohsen Bayati, Nikolay Doudchenko, Guido Imbens, and Khashayar Khosravi. Matrix completion methods for causal panel data models. Journal of the American Statistical Association, 116(536):1716–1730, 2021.

References II

- [5] Gecia Bravo-Hermsdorff, David S Watson, Jialin Yu, Jakob Zeitler, and Ricardo Silva. Intervention generalization: a view from factor graph models. In Proceedings of the 37th International Conference on Neural Information Processing Systems, pages 43662–43675, 2023.
- [6] Kay H Brodersen, Nicolas Remy, Steven L Scott, and Fabian Gallusser. Inferring causal impact using bayesian structural time-series models. Annals of Applied Statistics, 9:247–274, 2015.
- [7] Brian Brost, Rishabh Mehrotra, and Tristan Jehan. The music streaming sessions dataset. In The World Wide Web Conference, pages 2594–2600, 2019.
- [8] Bibhas Chakraborty and Erica E Moodie. Statistical methods for dynamic treatment regimes. Springer-Verlag. doi, 10(978-1):4–1, 2013.

References III

- [9] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. In NIPS 2014 Workshop on Deep Learning, December 2014, 2014.
- [10] Miguel A Hernán and James M Robins. Causal inference, 2010.
- [11] S Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997.
- [12] Jean Kaddour, Yuchen Zhu, Qi Liu, Matt J Kusner, and Ricardo Silva. Causal effect inference for structured treatments. Advances in Neural Information Processing Systems, 34:24841–24854, 2021.
- [13] Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

References IV

- [14] Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. In International Conference on Machine Learning, pages 1791–1799. PMLR, 2014.
- [15] Razieh Nabi, Todd McNutt, and Ilya Shpitser. Semiparametric causal sufficient dimension reduction of multidimensional treatments. In Uncertainty in Artificial Intelligence, pages 1445–1455. PMLR, 2022.
- [16] Judea Pearl. *Causality*. Cambridge university press, 2009.
- [17] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In International conference on machine learning, pages 1278–1286. PMLR, 2014.

References V

- [18] Yuta Saito, Qingyang Ren, and Thorsten Joachims. Off-policy evaluation for large action spaces via conjunct effect modeling. In international conference on Machine learning, pages 29734–29759. PMLR, 2023.
- [19] Yuta Saito, Jihan Yao, and Thorsten Joachims. Potec: Off-policy learning for large action spaces via two-stage policy decomposition. arXiv preprint arXiv:2402.06151, 2024.
- [20] Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.
- [21] A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.