The Power of Extrapolation in Federated Learning

Hanmin Li, Kirill Acharya, Peter Richtárik

King Abdullah University of Science and Technology

October 16, 2024

King Abdullah University of Science and Technology

KORKARYKERKER POLO

Introduction

- ▶ Federated learning (FL) is a distributed training approach for machine learning models, where multiple clients collaborate under the guidance of a central server to optimize a loss function [\[1,](#page-14-0) [3\]](#page-14-1).
- \blacktriangleright In this paper, We consider the following federated optimization problem,

$$
\min_{x \in \mathbb{R}^d} \left\{ f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) \right\},\tag{1}
$$

where each $f_i:\mathbb{R}^d\mapsto \mathbb{R}$ is a differentiable function, n is the number of clients.

Introduction

- ▶ The most commonly used algorithm to address this problem is the federated average (FedAvg) [\[2,](#page-14-2) [3\]](#page-14-1) algorithm. However, it suffers from client drift when the data is heterogeneous.
- ▶ In an attempt to tackle with this, FedProx was introduced li2020federated, which can be formulated as

$$
x_{k+1} = \frac{1}{n} \sum_{i=1}^{n} \text{prox}_{\gamma f_i}(x_k).
$$
 (FedProx)

KORKAR KERKER SAGA

 \triangleright Compared with gradient based algorithms, proximal algorithms are more stable.

Introduction

- ▶ Proximal operators of a convex function can be viewed as projection to a certain level set of the function.
- \blacktriangleright It is known that the parallel projection methods for solving the convex feasibility problem is accelerated by a practice called extrapolation.

$$
x_{k+1} = x_k + \alpha_k \left(\frac{1}{n} \sum_{i=1}^n \Pi_{\mathcal{X}_i} (x_k) - x_k \right). \tag{2}
$$

Here $\alpha_k > 1$ is the extrapolation parameter, the intersection of convex sets \mathcal{X}_i is assumed to be non-empty.

 \triangleright This means that we move further along the line connecting the current iterate x_k and the average projection point 1 $\frac{1}{n}\sum_{i=1}^n\Pi_{\mathcal{X}_i}(x_k).$

Motivation

- ▶ In this paper, we assume that the proximal operators are solved exactly with no inaccuracies.
- ▶ Given the similarity between the proximal operator and the projection operator, we propose to use extrapolation with FedProx.

Assumptions

- ▶ (Interpolation) There exists $x_k \in \mathbb{R}^d$ such that $\nabla f_i(x_k) = 0$ for all $i \in [n]$.
- \blacktriangleright (Individual convexity) The function $f_i:\mathbb{R}^d\mapsto\mathbb{R}$ satisfies $0\leq f_i(x)-f_i(y)-\langle \nabla f_i(y),x-y\rangle,$ for all $x,y\in\mathbb{R}^d$.
- ▶ (Smoothness) The function $f_i : \mathbb{R}^d \mapsto \mathbb{R}$ satisfies $f_i(x) - f_i(y) - \langle \nabla f_i(y), x - y \rangle \leq \frac{L_i}{2} ||x - y||^2$, for all $x, y \in \mathbb{R}^d$.

The interpolation assumption comes from the non-emptiness of convex feasibility.

KORKAR KERKER SAGA

Constant extrapolation

▶ For $\max_{\gamma f_i}(x_k)$, we know that the following identity holds,

$$
\nabla M_{f_i}^{\gamma}(x_k) = \frac{1}{\gamma} \left(x_k - \text{prox}_{\gamma f_i}(x_k) \right),
$$

where M^γ_{ℓ} $f_{f_i}^{\gamma}(x)$ is the Moreau envelope of f_i . This allows us to formulate the algorithm as

$$
x_{k+1} = x_k - \alpha_k \gamma \cdot \frac{1}{n} \sum_{i=1}^n \nabla M_{f_i}^{\gamma}(x_k),
$$

which is running SGD towards $M^{\gamma}(x) := \frac{1}{n} \sum_{i=1}^{n} M_{f_i}^{\gamma}(x)$.

 \blacktriangleright The interpolation assumption guarantees that minimizers of f and M^{γ} coincide.

KID KA KERKER E VOOR

Constant extrapolation

Assume Assumption 1, 2 and 3 holds, a fixed $\alpha_k = \alpha \in (0, 2/\gamma L_{\gamma, \tau})$, minibatch of size τ , local stepsize γ , we have

$$
\mathbb{E}\left[f(x_K)\right] - \inf f \leq C\left(\gamma, \tau, \alpha\right) \cdot \frac{\|x_0 - x_{\star}\|^2}{K},\tag{3}
$$

KO K K Ø K K E K K E K V K K K K K K K K K

where

$$
C(\gamma, \tau, \alpha) := \frac{1 + \gamma L_{\text{max}}}{\alpha \gamma (2 - \alpha \gamma L_{\gamma, \tau})}
$$

$$
L_{\gamma, \tau} := \frac{n - \tau}{\tau(n - 1)} \frac{L_{\text{max}}}{1 + \gamma L_{\text{max}}} + \frac{n(\tau - 1)}{\tau(n - 1)} L_{\gamma}.
$$

Here L_{γ} is the smoothness constant of $M^{\gamma}(x)$.

Remarks

- \blacktriangleright The optimal constant extrapolation parameter is $1/\gamma L_{\gamma,\tau} > 1$, resulting in $C(\gamma, \tau, \alpha_{\gamma,\tau}) = L_{\gamma,\tau} (1 + \gamma L_{\text{max}}) \le L_{\text{max}}$, which indicates convergence.
- If we assume in addition that f is μ -strongly convex, we obtain linear convergence.
- \blacktriangleright The convergence rate of FedProx is given by $C(\gamma, \tau, 1)$, and we have

$$
\frac{C(\gamma,\tau,1)}{C(\gamma,\tau,\alpha_{\gamma,\tau})}\geq 2+\gamma L_{\mathsf{max}}+\frac{1}{\gamma L_{\mathsf{max}}},
$$

indicating the superiority of our algorithm compared to FedProx.

Adaptive extrapolation

Since the extrapolation parameter α_k is naturally connected to stepsize of SGD, we can use adaptive rules to determine it.

$$
\alpha_{k,G} := \frac{\frac{1}{n}\sum_{i=1}^{n} ||x_k - \text{prox}_{\gamma f_i}(x_k)||^2}{\left\|\frac{1}{n}\sum_{i=1}^{n} (x_k - \text{prox}_{\gamma f_i}(x_k))\right\|^2} \ge 1.
$$
 (GraDS)

$$
\alpha_{k,S} := \frac{\frac{1}{n}\sum_{i=1}^{n}\left(M_{f_i}^{\gamma}(x_k) - \inf M_{f_i}^{\gamma}\right)}{\gamma \left\|\frac{1}{n}\sum_{i=1}^{n}\nabla M_{f_i}^{\gamma}(x_k)\right\|^2} \ge \frac{1}{2\gamma L_{\gamma}}.
$$
 (StoPS)

Adaptive extrapolation

Assume assumption 1, 2 and 3 holds, if we are using $\alpha_k = \alpha_{k,G}$ in the full batch case, we have

$$
\mathbb{E}\left[f(\bar{x}_{\mathsf{K}})\right] - \inf f \leq \frac{1 + \gamma L_{\max}}{2 + \gamma L_{\max}} \cdot \left(\frac{1}{\gamma} + L_{\max}\right) \cdot \frac{\|x_0 - x_{\star}\|^2}{\sum_{k=0}^{K-1} \alpha_{k,G}}, \quad (4)
$$

where \bar{x}_K is chosen randomly from the first K iterates $\{x_0, x_1, ..., x_{K-1}\}\$ with probabilities $p_k = \alpha_{k, \mathsf{G}} / \sum_{k=0}^{K-1} \alpha_{k, \mathsf{G}}\$. Similarly, if we are using $\alpha_k = \alpha_{k,S}$, we have

$$
\mathbb{E}\left[f(\bar{x}_{\mathsf{K}})\right] - \inf f \leq \left(\frac{1}{\gamma} + L_{\max}\right) \cdot \frac{\|x_0 - x_{\star}\|^2}{\sum_{k=0}^{\mathsf{K}-1} \alpha_{k,S}},\tag{5}
$$

where \bar{x}_K is chosen randomly from the first K iterates $\{x_0, x_1, ..., x_{K-1}\}\$ with probabilities $p_k = \alpha_{k,S}/\sum_{k=0}^{K-1} \alpha_{k,S}.$

Remarks

- \triangleright We can extend the theorem into stochastic setting, using a stochastic version of the two adaptive stepsizes.
- ▶ Both FedExProx-GraDS and FedExProx-StoPS exhibits "semi-adaptivit". A small γ hinders convergence, however, setting it to $\frac{1}{L_{\text{max}}}$ limits the worsening of the convergence to a factor of 2.

Experiments

▶ Comparison of FedProx and FedExProx in the full batch or minibatch setting.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Experiments

▶ Comparison of FedExP, FedExProx, FedExProx-GraDS and FedExProx-StoPS in terms of iteration complexity in the full batch or minibatch setting.

KORK ERKER ADAM ADA

Bibiliography I

F

螶

螶

Jakub Konečný, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave Bacon.

Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492, 8, 2016.

Olvi L Mangasarian and Mikhail V Solodov.

Backpropagation convergence via deterministic nonmonotone perturbed minimization.

Advances in Neural Information Processing Systems, 6, 1993.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.

Communication-efficient learning of deep networks from decentralized data.

In Artificial Intelligence and Statistics, pages 1273–1282. PMLR, 2017.