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Introduction

▶ Federated learning (FL) is a distributed training approach for
machine learning models, where multiple clients collaborate
under the guidance of a central server to optimize a loss
function [1, 3].

▶ In this paper, We consider the following federated
optimization problem,

min
x∈Rd

{
f (x) :=

1

n

n∑
i=1

fi (x)

}
, (1)

where each fi : Rd 7→ R is a differentiable function, n is the
number of clients.



Introduction

▶ The most commonly used algorithm to address this problem is
the federated average (FedAvg) [2, 3] algorithm. However, it
suffers from client drift when the data is heterogeneous.

▶ In an attempt to tackle with this, FedProx was introduced
li2020federated, which can be formulated as

xk+1 =
1

n

n∑
i=1

proxγfi (xk) . (FedProx)

▶ Compared with gradient based algorithms, proximal
algorithms are more stable.



Introduction

▶ Proximal operators of a convex function can be viewed as
projection to a certain level set of the function.

▶ It is known that the parallel projection methods for solving the
convex feasibility problem is accelerated by a practice called
extrapolation.

xk+1 = xk + αk

(
1

n

n∑
i=1

ΠXi
(xk)− xk

)
. (2)

Here αk > 1 is the extrapolation parameter, the intersection
of convex sets Xi is assumed to be non-empty.

▶ This means that we move further along the line connecting
the current iterate xk and the average projection point
1
n

∑n
i=1ΠXi

(xk).



Motivation

▶ In this paper, we assume that the proximal operators are
solved exactly with no inaccuracies.

▶ Given the similarity between the proximal operator and the
projection operator, we propose to use extrapolation with
FedProx.



Assumptions

▶ (Interpolation) There exists x⋆ ∈ Rd such that ∇fi (x⋆) = 0 for
all i ∈ [n].

▶ (Individual convexity) The function fi : Rd 7→ R satisfies
0 ≤ fi (x)− fi (y)− ⟨∇fi (y), x − y⟩, for all x , y ∈ Rd .

▶ (Smoothness) The function fi : Rd 7→ R satisfies
fi (x)− fi (y)− ⟨∇fi (y), x − y⟩ ≤ Li

2 ∥x − y∥2, for all
x , y ∈ Rd .

The interpolation assumption comes from the non-emptiness of
convex feasibility.



Constant extrapolation

▶ For proxγfi (xk), we know that the following identity holds,

∇Mγ
fi
(xk) =

1

γ

(
xk − proxγfi (xk)

)
,

where Mγ
fi
(x) is the Moreau envelope of fi . This allows us to

formulate the algorithm as

xk+1 = xk − αkγ · 1
n

n∑
i=1

∇Mγ
fi
(xk) ,

which is running SGD towards Mγ (x) := 1
n

∑n
i=1 M

γ
fi
(x).

▶ The interpolation assumption guarantees that minimizers of f
and Mγ coincide.



Constant extrapolation

Assume Assumption 1, 2 and 3 holds, a fixed αk = α ∈ (0, 2/γLγ,τ),
minibatch of size τ , local stepsize γ, we have

E [f (xK )]− inf f ≤ C (γ, τ, α) · ∥x0 − x⋆∥2

K
, (3)

where

C (γ, τ, α) :=
1 + γLmax

αγ (2− αγLγ,τ )

Lγ,τ :=
n − τ

τ(n − 1)

Lmax

1 + γLmax
+

n(τ − 1)

τ(n − 1)
Lγ .

Here Lγ is the smoothness constant of Mγ (x).



Remarks

▶ The optimal constant extrapolation parameter is 1/γLγ,τ > 1,
resulting in C (γ, τ, αγ,τ ) = Lγ,τ (1 + γLmax) ≤ Lmax, which
indicates convergence.

▶ If we assume in addition that f is µ-strongly convex, we
obtain linear convergence.

▶ The convergence rate of FedProx is given by C (γ, τ, 1), and
we have

C (γ, τ, 1)

C (γ, τ, αγ,τ )
≥ 2 + γLmax +

1

γLmax
,

indicating the superiority of our algorithm compared to
FedProx.



Adaptive extrapolation

Since the extrapolation parameter αk is naturally connected to
stepsize of SGD, we can use adaptive rules to determine it.

αk,G :=
1
n

∑n
i=1

∥∥xk − proxγfi (xk)
∥∥2∥∥ 1

n

∑n
i=1

(
xk − proxγfi (xk)

)∥∥2 ≥ 1. (GraDS)

αk,S :=

1
n

∑n
i=1

(
Mγ

fi
(xk)− infMγ

fi

)
γ
∥∥∥ 1
n

∑n
i=1∇Mγ

fi
(xk)

∥∥∥2 ≥ 1

2γLγ
. (StoPS)



Adaptive extrapolation

Assume assumption 1, 2 and 3 holds, if we are using αk = αk,G in
the full batch case, we have

E [f (x̄K )]− inf f ≤ 1 + γLmax

2 + γLmax
·
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2∑K−1

k=0 αk,G

, (4)

where x̄K is chosen randomly from the first K iterates
{x0, x1, ..., xK−1} with probabilities pk = αk,G/

∑K−1
k=0 αk,G . Similarly,

if we are using αk = αk,S , we have

E [f (x̄K )]− inf f ≤
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2∑K−1

k=0 αk,S

, (5)

where x̄K is chosen randomly from the first K iterates
{x0, x1, ..., xK−1} with probabilities pk = αk,S/

∑K−1
k=0 αk,S .



Remarks

▶ We can extend the theorem into stochastic setting, using a
stochastic version of the two adaptive stepsizes.

▶ Both FedExProx-GraDS and FedExProx-StoPS exhibits
“semi-adaptivit”. A small γ hinders convergence, however,
setting it to 1

Lmax
limits the worsening of the convergence to a

factor of 2.



Experiments

▶ Comparison of FedProx and FedExProx in the full batch or
minibatch setting.
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Experiments

▶ Comparison of FedExP, FedExProx, FedExProx-GraDS and
FedExProx-StoPS in terms of iteration complexity in the full
batch or minibatch setting.
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