BICCOS: Scalable Neural Network Verification with Branch-and-bound Inferred Cutting Planes

Duo Zhou¹ Christopher Brix² Grani A. Hanasusanto¹ Huan Zhang¹

¹University of Illinois Urbana-Champaign

²RWTH Aachen University

Motivation: Scalable Neural Network Verification

Problem Statement. Prove: $\forall x \in \mathcal{S}, f(x) > 0 \Leftrightarrow \min_{x \in \mathcal{S}} f(x) > 0$

SOTA: GCP-CROWN¹, Bound Propagation + *General* Cutting Planes. Challenges: Cutting Planes are from external MIP solvers, which can not scale Our Goal: *specialized* and efficient cutting planes for NN verification

Preliminary: Math Programming & Bound Propagation

Goal of Our Paper: Find Cutting Planes

A cutting plane reduces the solution space by excluding infeasible regions without impacting feasible integer solutions.

Our objective: develop **specialized** cutting planes **from NN verification** procedure that strengthen the formulation while ensuring **scalability**.

Main idea: BaB inferred cuts from verified subproblems

- After splitting z₁ and z₃ both to inactive cases, subproblem verified
- Neuron z₁ and z₃ cannot simultaneously be inactive. To exclude this situation, we create a new constraint (cut) on the relaxed

z:

$$z_1 + z_3 \ge 1$$

• See the general form in our paper

However, just adding this cut does not improve verification!

The rest of subproblems all have $z_1=1$ or $z_3=1$

None of the other subproblems on the search tree violate the cut $z_1 + z_3 \ge 1$, so their bounds do not improve.

Solution: Constraint Strengthening - shorter cuts are stronger!

Starting from the verified path left,

If $z_1 = 0$ is not needed to make the path verifiable, we can get a strengthened cut.

Simplifying the cut by involving fewer z variables reduces the dimensionality of the hyperplane

Even more short cuts via Multi-Tree Searching (MTS)

Multiple trees are searched in parallel, with cuts from one tree applied across others

Results on VNN-COMP benchmarks

10

Ablation study on components of BICCOS

Conclusion

- Specialized and scalable cutting plane generation for NN verification
- Cut improvements with constraint strengthening and multi-tree search
- SOTA performance on multiple NN verification benchmarks
- Integrated to the SOTA verifier α , β -CROWN: <u>https://abcrown.org</u>.

Winner of International Verification of Neural Networks Competitions VNN-COMP 2021-2024