Achievable distributional robustness when the robust risk is only partially identified

Julia Kostin, Nicola Gnecco, Fanny Yang ETH Zurich, University College London

ETHzürich

Julia Kostin

Team

Nicola Gnecco

Fanny Yang

EHzürich

Out-of-domain generalization

Training distribution \mathbb{P}_{train}

Test distribution \mathbb{P}_{test}

Out-of-domain generalization

Low training risk

Training distribution \mathbb{P}_{train}

 $\beta_{\text{train}} = \arg\min_{\beta} \mathcal{R}(\beta; \mathbb{P}_{\text{train}}) \quad \mathcal{R}(\beta_{\text{train}}; \mathbb{P}_{\text{test}}) \gg \min_{\beta} \mathcal{R}(\beta; \mathbb{P}_{\text{test}})$ High test risk

Distributional robustness

Goal: given training data, generalize to a set of feasible test distributions, called robustness set, by computing a minimiser of the robust risk

$$\beta_{\text{rob}} = \arg\min_{\beta} \left[\mathscr{R}_{\text{rob}}(\beta; \mathscr{P}_{\text{rob}}(\theta_{\star})) := \sup_{\mathbb{P} \in \mathscr{P}_{\text{rob}}(\theta_{\star})} \mathscr{R}(\beta; \mathbb{P}) \right]$$

In previously considered robustness scenarios, the parameters θ_{\star} and/or the robustness set $\mathscr{P}_{rob}(\theta_{\star})$ are considered to be **known**:

Distributionally robust optimization

$\mathcal{P}_{rob}(\mathbb{P}_{train})$
Ptrain

δ

$\begin{aligned} \theta_{\star} &= \mathbb{P}_{\text{train}}; \\ \mathscr{P}_{\text{rob}}(\theta_{\star}) &= \{\mathbb{P}: D(\mathbb{P}, \mathbb{P}_{\text{train}}) \leq \delta\} \end{aligned}$

Often, θ_{\star} and/or $\mathscr{P}_{rob}(\theta_{\star})$ are neither known nor computable from training data

Set of possible model parameters

Instead, they can be merely set identified.

Set of possible robust risks

We propose to minimise a new objective called the identifiable robust risk:

Best achievable distributional robustness:

 $\mathcal{R}_{\text{rob,ID}}(\beta; \Theta_{\text{eq}}) := \sup_{\substack{\theta \in \Theta_{\text{eq}}}} \sup_{\mathbb{P} \in \mathscr{P}_{\text{rob}}(\theta)} \mathcal{R}(\beta, \mathbb{P})$

 $\mathfrak{M}(\Theta_{eq}) = \inf_{\beta \in \mathbb{R}^d} \mathscr{R}_{rob,ID}(\beta; \Theta_{eq})$

Setting of structural causal models

Data model: linear structural causal model (SCM) with unobserved confounding, environments differ via additive shifts A^e :

$$A^e + \eta;$$

 $X^e =$

 $Y^e = \beta_{\downarrow}^{\top} X^e + \xi,$

Setting of structural causal models

Some structural knowledge about the strength and direction of the test shift:

 $\mathbb{E}[A^{\text{test}}A^{\text{test}}]^{\top}$

$$] \leq M_{\text{test}} = \gamma \Pi_{\mathscr{M}}.$$

- Infinite robustness to arbitrary shifts only possible if β_{\star} known (requires $\mathcal{O}(d)$ env's)
- •However, β_{\star} only identified on

Identifiable robustness for the SCM setting

We compute the identifiable robust risk explicitly:

$$\mathscr{R}_{rob,ID}(\beta;\Theta_{eq},\gamma\Pi_{\mathscr{M}}) = \mathscr{R}(\beta;\theta_{\star}) - \mathcal{R}(\beta;\theta_{\star}) - \mathcal{R}(\beta;\theta_{\star}) = \mathscr{R}(\beta;\theta_{\star}) - \mathcal{R}(\beta;\theta_{\star}) - \mathcal{R}(\beta;\theta$$

where:

- S: test shift directions along which the causal model can be identified
- R: test shift directions along which the model is non-identifiable
- $C_{\rm ker}$: max. norm of the model along non-identified directions

 $+ \gamma \|S^{\top}(\beta^{\mathscr{S}} - \beta)\|_{2}^{2} + \gamma (C_{ker} + \|R^{\top}\beta\|_{2})^{2},$ Invariance term **Non-identifiability term**

sal model can be identified del is non-identifiable entified directions

Identifiable robustness for the SCM setting

We **compute** the identifiable robust risk explicitly:

$$\mathscr{R}_{rob,ID}(\beta;\Theta_{eq},\gamma\Pi_{\mathscr{M}}) = \mathscr{R}(\beta;\theta_{\star}) - \mathcal{R}(\beta;\theta_{\star}) - \mathcal{R}(\beta;\theta$$

- We prove a **lower bound** for the id. robust risk which is tight for large γ ;
- 2023].

 $+ \gamma \|S^{\top}(\beta^{\mathscr{S}} - \beta)\|_{2}^{2} + \gamma (C_{ker} + \|R^{\top}\beta\|_{2})^{2},$

Invariance term

Non-identifiability term

• For large γ , we prove suboptimality of existing robustness methods such as anchor regression [Rothenhäusler et al. 2021] and DRIG [Shen et al.

Simulations on Gaussian SCM data:

Experiments on real-world gene expression dataset [Replogle et al. 2022]:

Methods: \rightarrow Rob-ID \rightarrow Anchor \rightarrow DRIG \rightarrow ICP \rightarrow OLS

Outlook

- Extension to classification
- Nonlinear models
- Use for active intervention selection
- Partially identifiable framework beyond causality

