

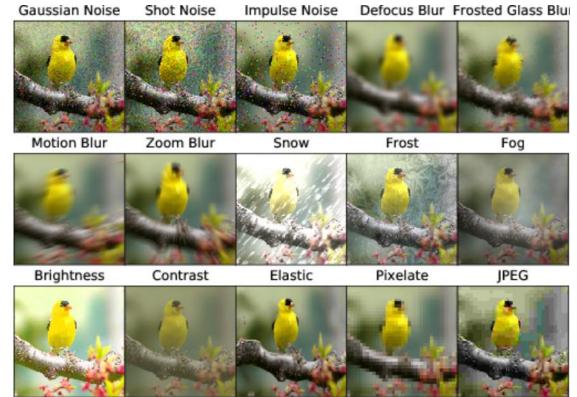
L-TTA: Lightweight Test-Time Adaptation Using a Versatile Stem Layer

Jin Shin, Hyun Kim*

Seoul National University of Science and Technology, Seoul, Korea {shinjin0103, hyunkim}@seoultech.ac.kr

• Test-Time Adaptation (TTA):

- TTA adapts pre-trained models to unseen distribution of data during inference, using only input (*i.e.*, images) without labels by fine-tuning some layers.



Effect of different test samples in test time entropy minimization (Efficient Test-Time Model Adaptation without Forgetting, PMLR, 2022)

• Motivations:

Recent TTA methodologies have focused on minimizing entropy (EM), but this approach requires forward/backward process and is limited in terms of data leveraging.

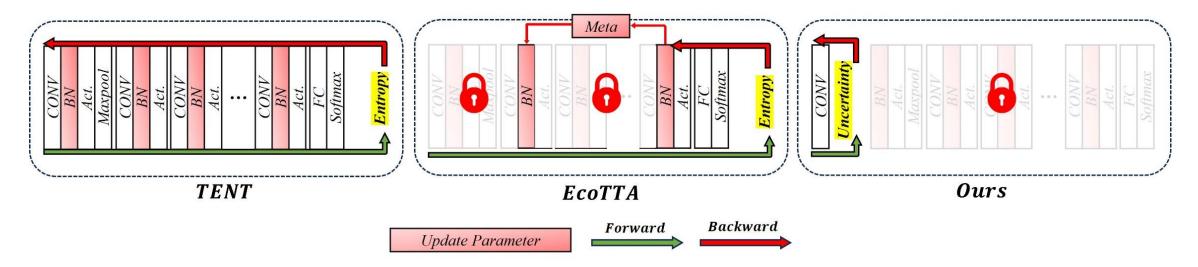
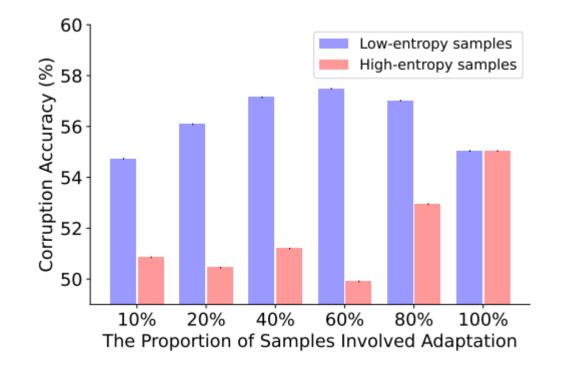


Diagram comparing the forward/backward flow and update process

• Motivations:

Recent TTA methodologies have focused on minimizing entropy (EM), but this approach requires forward/backward process and is **limited in terms of data leveraging**.



Effect of different test samples in test time entropy minimization (Efficient Test-Time Model Adaptation without Forgetting, PMLR, 2022)

• Goals:

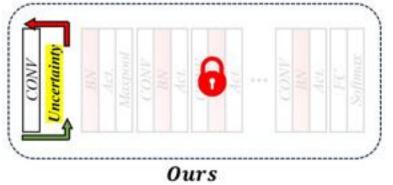
1. Practicality in training: Minimizing the resources required for training such as memory, **to attain acceptable a reasonable prediction accuracy** in a D_t .

2. Scalability: Designing to be non-invasively and conveniently applicable in CNN-based tasks without modifying other layers.

3. Data leveraging: Maximinzing usability from independent data to achieve TTA within constraints, even with small batch sizes.

• Approach:

By fine-tuning the first representation of the imput image, fast adaptation D_t is possible. Therefore, instead of expensive entropy, we extract and minimize the channel-wise uncertainty from the reconstructed stem layer.



• Goals:

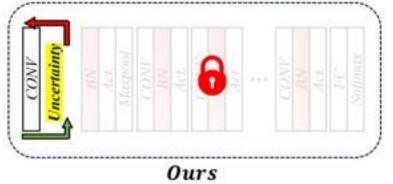
1. Practicality in training: Minimizing the resources required for training such as memory, to attain acceptable a reasonable prediction accuracy in a D_t .

2. Scalability: Designing to be non-invasively and conveniently applicable in CNN-based tasks without modifying other layers.

3. Data leveraging: Maximinzing usability from independent data to achieve TTA within constraints, even with small batch sizes.

• Approach:

By fine-tuning the first representation of the imput image, fast adaptation D_t is possible. Therefore, instead of expensive entropy, we extract and minimize the channel-wise uncertainty from the reconstructed stem layer.



• Goals:

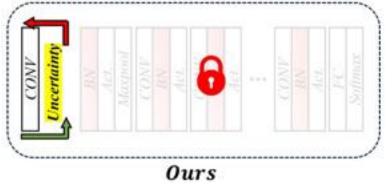
1. Practicality in training: Minimizing the resources required for training such as memory, to attain acceptable a reasonable prediction accuracy in a D_t .

2. Scalability: Designing to be non-invasively and conveniently applicable in CNN-based tasks without modifying other layers.

3. Data leveraging: Maximinzing usability from independent data to achieve TTA within constraints, even with small batch sizes.

• Approach:

By fine-tuning the first representation of the imput image, fast adaptation D_t is possible. Therefore, instead of expensive entropy, we extract and minimize the channel-wise uncertainty from the reconstructed stem layer.



• Goals:

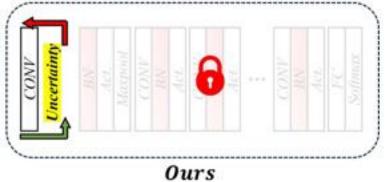
1. Practicality in training: Minimizing the resources required for training such as memory, to attain acceptable a reasonable prediction accuracy in a D_t .

2. Scalability: Designing to be non-invasively and conveniently applicable in CNN-based tasks without modifying other layers.

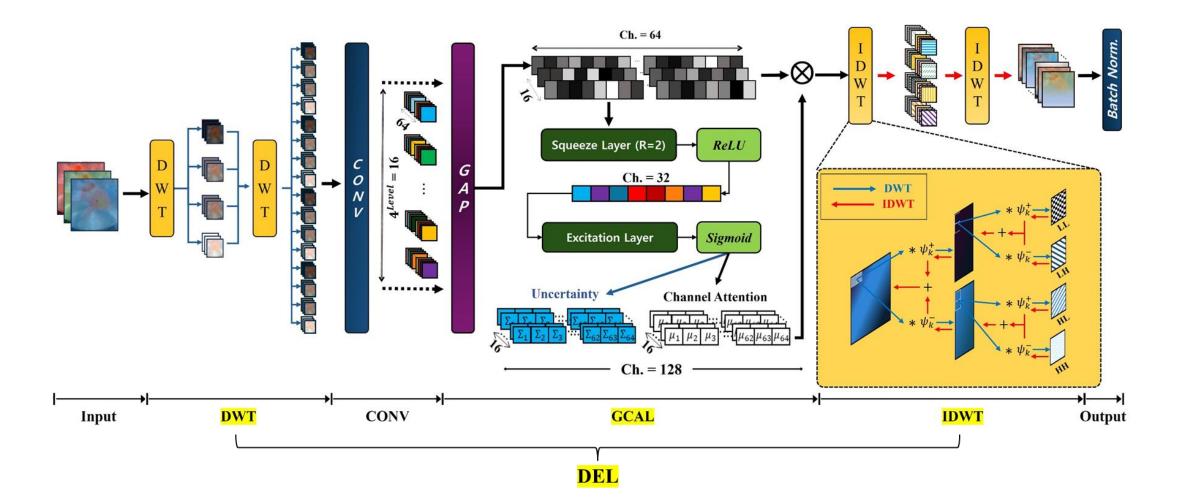
3. Data leveraging: Maximinzing usability from independent data to achieve TTA within constraints, even with small batch sizes.

• Approach:

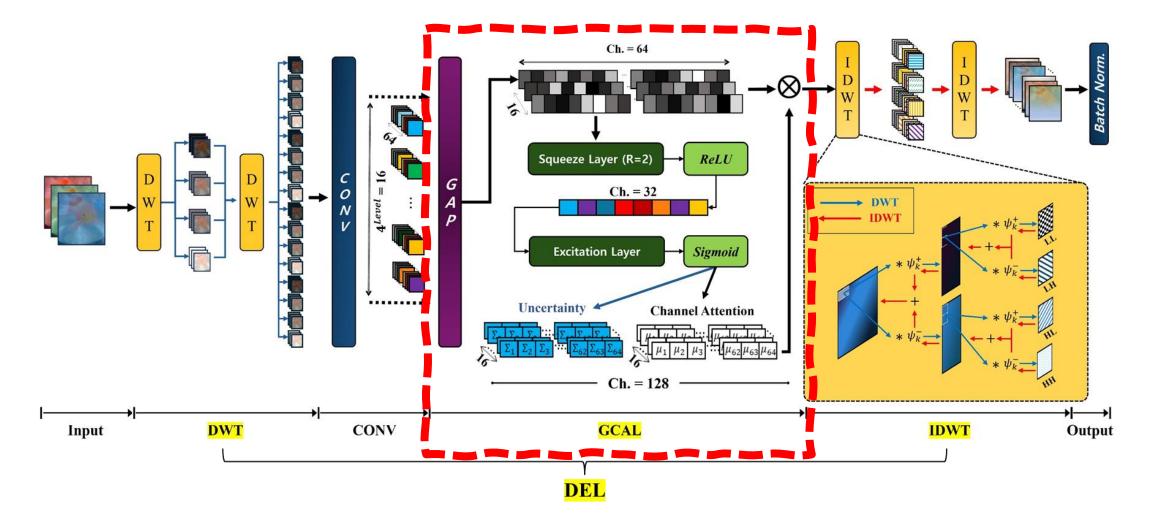
By fine-tuning the first representation of the input image, fast adaptation D_t is possible. Therefore, instead of expensive entropy, we extract and minimize the channel-wise uncertainty from the reconstructed stem layer.



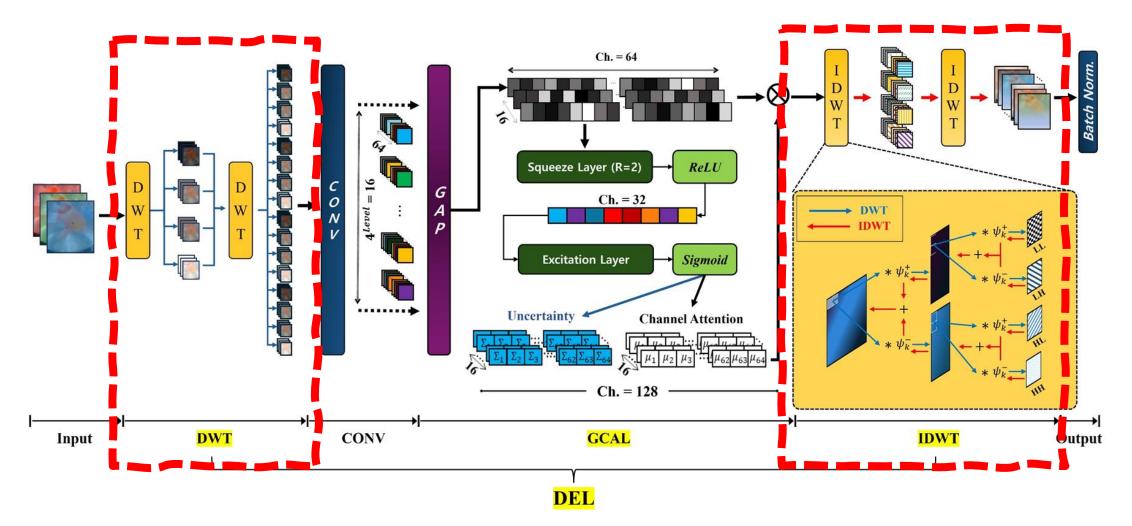
L-TTA - Overview



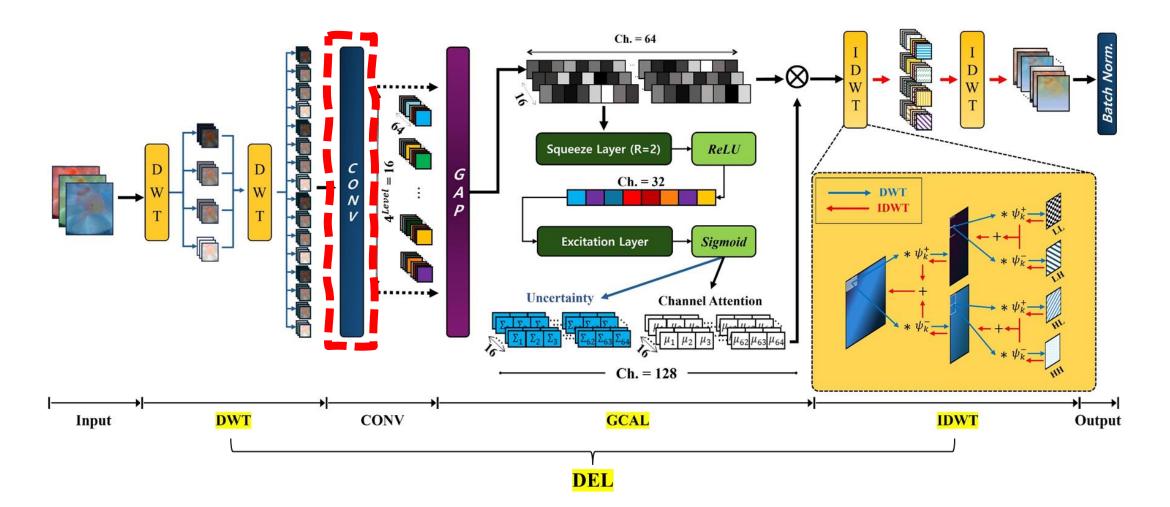
L-TTA - Gaussian Channel Attention Layer



L-TTA - Domain Embedding Layer



L-TTA – Baseline

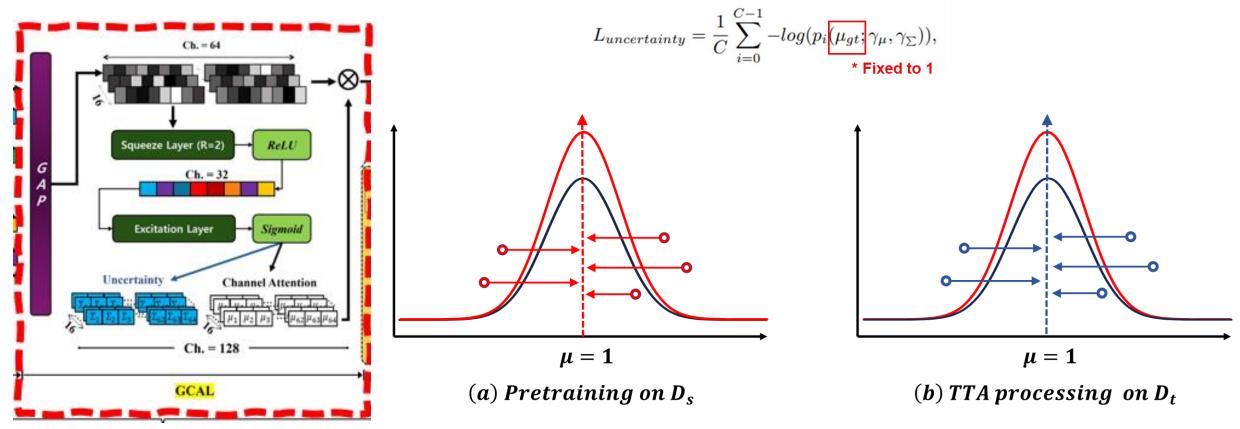


L-TTA - Gaussian Channel Attention Layer

GCAL: Gaussian Channel Attention Layer

- The output channels of the squeeze and excitation layer are doubled, with half allocated to channelwise uncertainty.

- All channels are encouraged to produce the correct output for inputs with low uncertainty when pretrained on *D*_s with GCAL, as shown in the equation below:



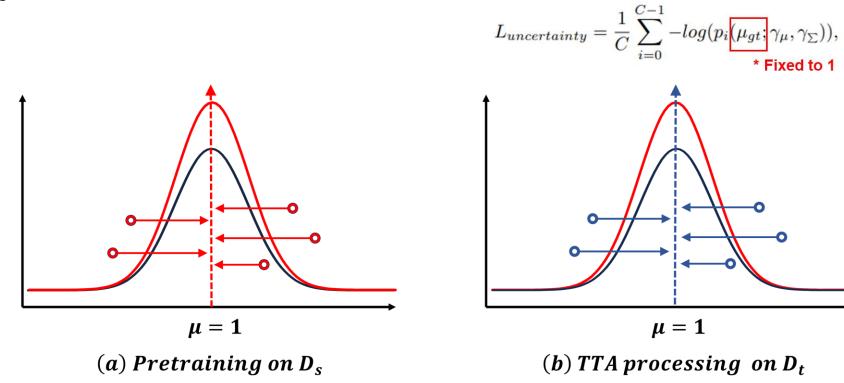
L-TTA - Gaussian Channel Attention Layer

GCAL: Gaussian Channel Attention Layer

- Obviously, the D_t has a potentially higher uncertainty due to the different data distribution (especially, in the high-frequency domain)

- Based on these two facts, we minimize uncertainty about the unlabeled data in the D_t .

- This process helps ensure that the performance of frozen subsequent layers can be leveraged like it was in the D_s .



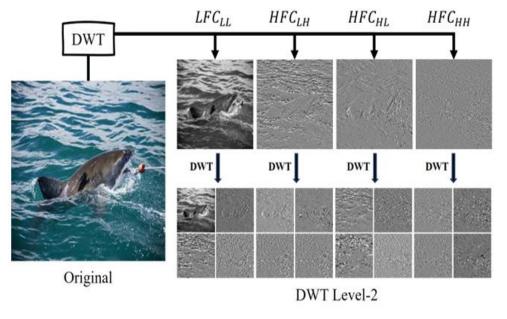
L-TTA - Domain Embedding Layer

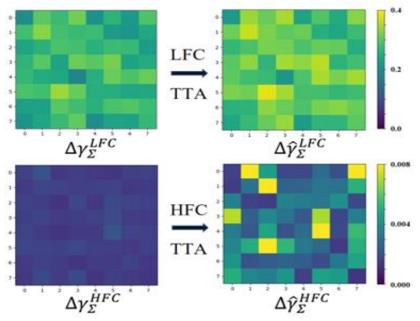
DEL: Domain Embedding Layer

- To alleviate entropy ambiguity, we propose DEL, which encapsulates GCAL and CONV layers with discrete wavelet transform (DWT) and Inverse DWT layers.

- By decomposing a single data into low- and high-frequency domains through DWT, we can derive low and high entropy respectively.

- Our reconstructed stem layer allow us to identify and minimize entropy within these freuquency domains





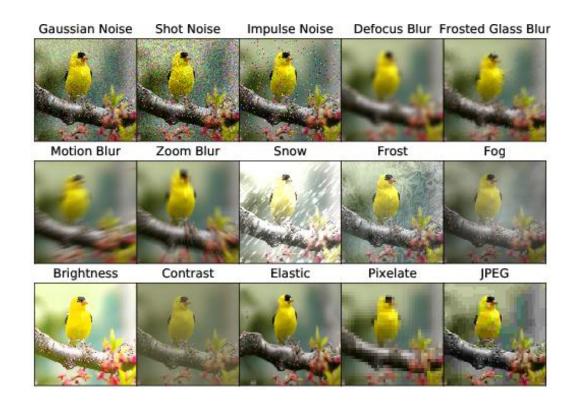
< ODD: OmniDirectional Decomposition >

< The variance of uncertainty according to the domain shift of LFC and HFC >

Experimental Results - 1

- Image Classification (REALM vs. L-TTA)
 - Scenario 1: CIFAR-10 \rightarrow CIFAR-10-C (+ 5.4%)
 - Scenario 2: ImageNet \rightarrow ImageNet-C (- 2.7%)

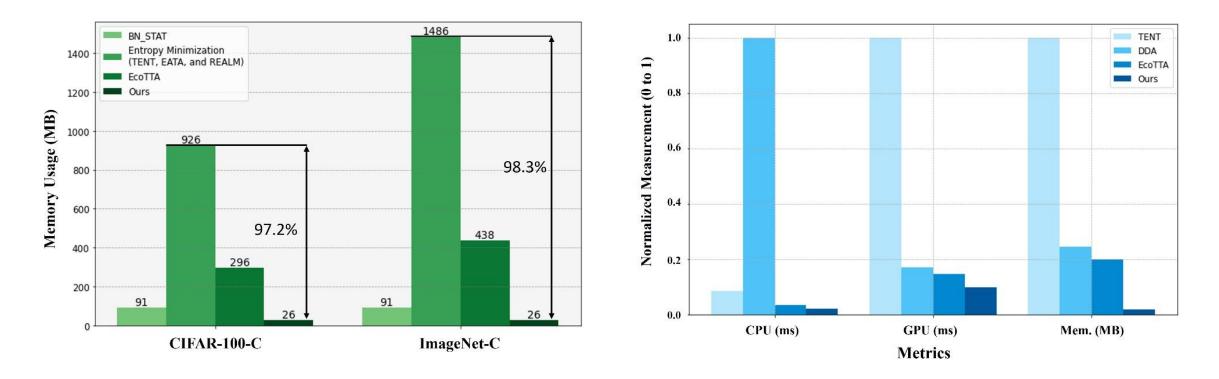
Method	Noise			Blur				Weather				Digital				Avg.
	Gauss.	Shot	Impul.	Defoc.	Glass	Motion	Zoom	Snow	Frost	Fog	Brit.	Contr.	Elastic	Pixel	JPEG	Avg.
CIFAR-10-C																
Source	86.9	82.6	81.8	11.4	50.2	18.9	9.1	16.4	26.4	18.4	7.1	24.5	22.8	64.0	28.3	36.6
Ours w/o GCAL	62.4	55.4	48.5	12.1	51.7	15.5	8.5	16.6	26.4	21.7	6.4	31.0	21.3	61.7	22.5	30.8
TENT[59]	39.4	38.8	47.9	19.9	45.0	23.2	20.6	28.1	32.1	24.5	16.1	26.7	32.4	30.6	35.5	30.7
MEMO[65]	43.5	39.9	43.3	26.4	44.4	25.1	25.0	20.9	28.3	22.8	11.9	28.3	21.1	42.8	21.7	29.7
SFT[33]	31.9	26.7	28.9	17.7	44.2	18.4	20.2	20.8	23.4	20.7	13.9	25.4	24.5	21.9	25.1	24.2
EATA[45]	33.9	32.8	41.4	19.4	42.4	20.5	20.1	22.4	27.1	22.7	13.8	24.0	24.0	29.3	26.5	26.7
SAR[46]	46.4	40.9	50.1	20.2	47.0	21.7	20.8	22.9	29.5	23.9	13.8	25.5	24.3	39.5	27.4	30.3
REALM[53]	27.8	25.4	35.5	15.5	37.7	17.4	16.9	20.4	22.3	19.0	12.9	18.0	23.1	22.0	24.2	22.5
Ours w/o DEL	34.1	30.0	32.3	9.9	37.5	11.4	7.3	12.9	13.3	11.7	5.7	7.0	18.3	16.2	24.8	18.2
Ours	31.7	27.4	30.9	9.1	35.1	11.3	6.9	12.9	13.7	12.2	5.5	7.7	18.0	12.6	22.6	17.2
ImageNet-C																
Source	97.8	97.1	98.2	82.1	90.2	85.2	77.5	83.1	76.7	75.6	41.1	94.6	83.1	79.4	68.4	82.0
Ours w/o GCAL	82.7	82.6	86.2	79.1	89.1	84.2	75.7	74.8	67.3	73.1	37.5	84.6	74.1	43.2	55.2	72.6
TENT[59]	97.5	97.1	97.5	86.5	96.4	81.4	82.4	84.7	77.0	98.6	29.6	57.8	93.8	50.8	46.2	78.5
MEMO[65]	81.5	79.5	81.6	82.9	87.4	78.2	73.1	59.6	53.0	65.6	30.5	63.5	80.8	67.9	46.7	68.8
DDA[17]	57.6	56.7	57.7	83.4	80.4	78.1	74.0	64.3	59.9	86.3	38.8	74.8	62.5	53.4	45.9	64.9
EATA[45]	75.2	71.7	74.3	81.9	82.7	71.5	70.7	55.5	55.7	58.4	29.1	55.4	73.0	53.2	44.3	63.5
SAR[46]	76.6	73.4	76.1	81.6	84.6	71.4	69.6	55.1	55.3	74.3	27.7	55.5	85.2	53.0	43.9	65.5
REALM[53]	73.1	70.1	72.0	81.6	81.8	70.4	68.9	54.4	56.4	54.5	28.8	55.6	71.1	50.3	44.5	62.2
Ours w/o DEL	75.1	74.5	76.1	84.7	88.3	76.0	68.3	62.3	53.1	58.9	30.5	81.8	64.5	62.6	57.0	67.6
Ours	79.0	78.4	81.8	75.8	81.5	72.9	64.1	69.1	54.3	58.8	33.6	73.3	57.6	41.0	54.3	65.0



< 15 types of corruptions with most severe level (=5) >

Experimental Results - 2

- Consumed Memory Usage (EM vs. EcoTTA vs. L-TTA)
 - CIFAR-100-C (2.8%, and 8.8%)
 - ImageNet-C (<u>1.7%</u>, and 5.9%)
- Training time (EM vs. DDA vs. EcoTTA vs. L-TTA)
 - L-TTA demonstrates 4.25×, 49.56×, and 1.76× faster in total latency.



Thank You!