

Knowledge Composition using Task Vectors with Learned Anisotropic Scaling

Frederic Z. Zhang^{*} Paul Albert^{*} Cristian Rodriguez-Opazo Anton van den Hengel Ehsan Abbasnejad

{firstname.lastname@adelaide.edu.au}

Australian Institute for Machine Learning University of Adelaide December 2024

Task vectors^[1]

- Defined as the difference in network weights after fine-tuning
- Characterises the direction and stride of fine-tuning

Task arithmetic

- Properties of task vectors that enable model editing via
 - Addition model merging
 - Negation remove model bias

Task arithmetic (Cont.)

• Implications

- Task vectors can serve as knowledge carriers
- Learning problems may be simplified to learning a combination of task vectors

$Proposed \ method-aTLAS$

<u>Task vectors with learned anisotropic scaling</u>

• Task vectors represented as a collection of *m* parameter blocks, with each block represented by a column vector.

 $oldsymbol{ au} \,=\, igl(oldsymbol{ au}^{(1)},\ldots,oldsymbol{ au}^{(m)}igr)$

$Proposed \ method-aTLAS$

<u>Task vectors with learned anisotropic scaling</u>

- Task vectors represented as a collection of *m* parameter blocks, with each block represented by a column vector.
- Anisotropic scaling as a block-diagonal matrix, with each scaling coefficient $\lambda^{(j)} \in \mathbb{R}$ being a learnable parameter.

$$\Lambda = \begin{bmatrix} \lambda^{(1)}I^{(1)} & \dots & \mathbf{0} \\ \vdots & \ddots & \vdots \\ \mathbf{0} & \dots & \lambda^{(m)}I^{(m)} \end{bmatrix}$$
$$\Lambda_i \boldsymbol{\tau}_i = \left(\lambda_i^{(1)}\boldsymbol{\tau}_i^{(1)}, \dots, \lambda_i^{(m)}\boldsymbol{\tau}_i^{(m)}\right)$$

Proposed method – aTLAS

Task vectors with learned anisotropic scaling

- Task vectors represented as a collection of *m* parameter blocks, with each block represented by a column vector.
- Anisotropic scaling as a block-diagonal matrix, with each scaling coefficient $\lambda^{(j)} \in \mathbb{R}$ being a learnable parameter.
- Optimal composition of task vectors

 $\underset{\Lambda_1,\ldots,\Lambda_n}{\operatorname{arg\,min}} \mathbf{E}_{(\mathbf{x},\mathbf{y})\in\mathcal{D}_t} \Big[\mathcal{L} \big(f(\mathbf{x};\boldsymbol{\theta}_0 + \sum_{i=1}^n \Lambda_i \boldsymbol{\tau}_i), \mathbf{y} \big) \Big]$

Intuitions

• Isotropic scaling vs. anisotropic scaling

Application 1: Improved task arithmetic

Task arithmetic performance

Task negation

		ViT-B/32		ViT-B/16		ViT-L/14	
Methods	Models	Target (\downarrow)	Control (†)	Target (\downarrow)	Control (†)	Target (\downarrow)	Control (†)
Pre-trained	$f(\mathbf{x}; heta_0)$	48.14	63.35	55.48	68.33	64.89	75.54
Search aTLAS (ours)	$f(\mathbf{x}; heta_0 + lpha oldsymbol{ au}) \ f(\mathbf{x}; heta_0 + \Lambda oldsymbol{ au})$	23.22 18.76	60.71 61.21	19.38 17.34	64.66 65.84	19.15 17.75	72.05 73.28

Task addition

		ViT-B/32		ViT-B/16		ViT-L/14	
Methods	Models	Abs. (†)	Rel. (†)	Abs. (†)	Rel. (†)	Abs. (†)	Rel. (†)
Pre-trained	$f(\mathbf{x}; heta_0)$	48.14	_	55.48	-	64.89	-
Search aTLAS (ours)	$egin{aligned} &fig(\mathbf{x}; heta_0 + lpha \sum_i oldsymbol{ au}_iig) \ &fig(\mathbf{x}; heta_0 + \sum_i \Lambda_i oldsymbol{ au}_iig) \end{aligned}$	70.12 84.98	77.24 93.79	73.63 86.08	79.85 93.44	82.93 91.36	87.92 97.07

Observations

• Learned coefficients concentrate on weight matrices, and on deeper layers.

Observations (Cont.)

- Learned coefficients concentrate on weight matrices, and on deeper layers.
- Anisotropic scaling can achieve lower disentanglement error, resulting in less conflict between different models during composition.

[2] Task Arithmetic in the Tangent Space: Improved Editing of Pre-Trained Models, Ortiz-Jimenez et al., NeurIPS'23

Application 2: Knowledge transfer in low-data regimes

Few-shot adaptation

- Complementarity with existing few-shot methods
- Robustness against domain shift

 [3] Tip-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling, Zhang et al., ECCV'22
[4] LP++: A Surprisingly Strong Linear Probe for Few-Shot CLIP, Huang et al., CVPR'24

Test-time adaptation

Adapting a model without labelled data, using

- Entropy minimisation
- Contrastive objective
- Pseudo labelling

Method	Zero-shot	Contrastive (SimCLR)		Entropy (SAR)		Pseudo labelling (UFM)	
		LN	aTLAS	LN	aTLAS	LN	aTLAS
Accuracy	60.4	60.4 ± 0.0	62.7 ± 0.1	61.2 ± 0.1	62.9 ± 0.0	62.2 ± 0.1	66.9 ± 0.1

Application 3: Parameter-efficient fine-tuning (PEFT)

LoRAs^[7] as task vectors

Low-rank adaptations (LoRAs) are sparse task vectors

	Standard tasl	LoRAs as task vectors			
Shots (k)	All parameter blocks (10.7 GB)	Weight matrices (10.5 GB)	Rank=4 (3.3 GB)	Rank=16 (3.4 GB)	Rank=64 (4.1 GB)
1	66.0 ± 0.2	66.0 ± 0.1	64.4 ± 0.1	64.6 ± 0.1	65.4 ± 0.1
2	67.7 ± 0.1	67.0 ± 0.2	65.7 ± 0.0	66.6 ± 0.2	67.4 ± 0.1
4	70.0 ± 0.0	69.4 ± 0.2	68.2 ± 0.0	68.7 ± 0.1	69.5 ± 0.2
8	71.3 ± 0.1	70.9 ± 0.0	70.2 ± 0.2	70.4 ± 0.1	70.9 ± 0.1
16	72.8 ± 0.1	72.3 ± 0.0	71.7 ± 0.1	71.8 ± 0.1	72.0 ± 0.1

Scaling up aTLAS

Higer performance across different percentage of data

Percentage of training data (%)

Conclusion

- We introduced an algorithm (aTLAS) for task vector composition
- Learned anisotropic scaling results in lower disentanglement error
- Learned coefficients concentrate on weight matrices, and on deeper layers
- aTLAS is complementary to existing few-shot methods
- aTLAS is robust to domain shift
- LoRAs can be integrated into aTLAS for memory efficiency
- aTLAS can be efficiently scaled up for higher performance