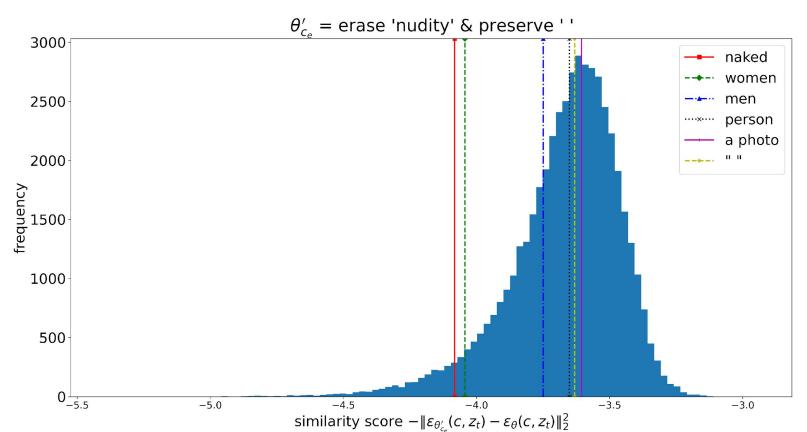
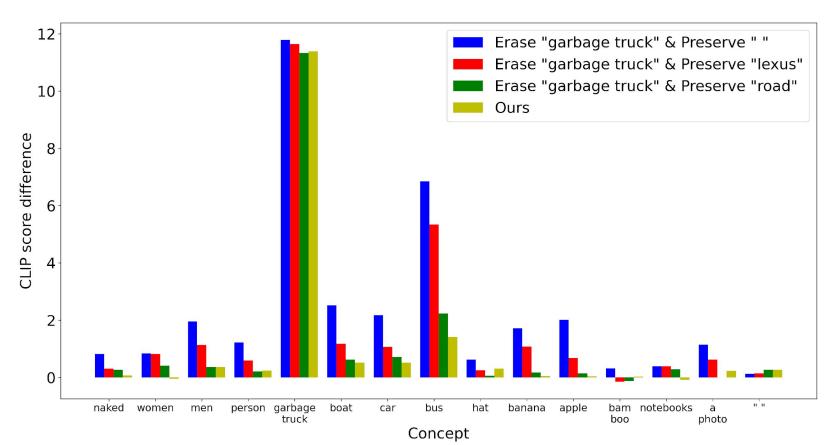

Department of Defence Defence Science and Technology Group

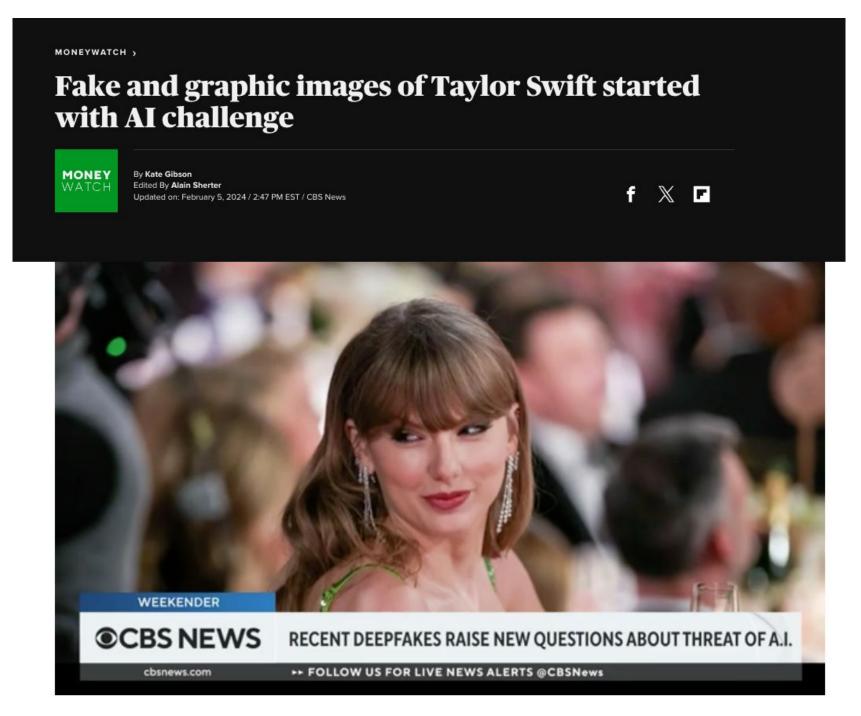
KEY OBSERVATIONS


How to measure the Side-Effect of Concept Erasure

- CLIP alignment score $S_{\theta,i,c} = S(G(\theta, c, z_T^i), c) \rightarrow$ the higher score, the better model can generate concept c
- $\delta_{c_e}(c) = \frac{1}{k} \sum_{i=1}^{k} (S_{\theta,i,c} S_{\theta'_{c_o},i,c}) \rightarrow$ the larger different, the higher side-effect (negatively) to model's capability


1 - Erasing Different Concepts Leads to Different Side-Effects

2 - Neutral Concepts lie in the Middle of the Sensitivity Spectrum



3 – What Concept Should be Kept to Minimize the Side-Effect

Erasing Undesirable Concepts in Diffusion Models with **Adversarial Preservation**

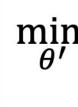
Anh Bui¹, Long Vuong¹, Khanh Doan², Trung Le¹, Paul Montague³, Tamas Abraham³, Dinh Phung¹ ¹ Monash University, ² VinAl Research, ³ DSTG

How to prevent Al-generated "po*n" content?

CONCEPT ERASURE

Naïve Approach

$$\min_{\theta'} \mathbb{E}_{c_e \in E} \left[\|\epsilon_{\theta'}(c_e) - \epsilon_{\theta}(c_n)\|_2^2 \right] + L_2$$


Where:

- θ, θ' : original and sanitized models
- $c_e \in E$: concept to-be-erased (e.g., `nudity')
- c_n : neutral/generic concept (e.g., `a photo')
- $\epsilon_{\theta}(c)$: noise-prediction function
- L_2 : preservation loss

 $L_2 = \|\epsilon_{\theta'}(c_n) - \epsilon_{\theta}(c_n)\|_2^2 \text{ or } \|\theta' - \theta\|_2^2$

From Observations to Motivation:

- Observation 2 \rightarrow Preserving a neutral/generic concept c_n is sub-optimal.
- Observation $1 \rightarrow$ to-be-preserved concept should be adaptive.
- Observation $3 \rightarrow$ to-be-preserved concept should be related to the to-be-erased concepts.

i=0

i=0ca="truck"

ADVERSARIAL PRESERVATION $\min_{\theta'} \max_{c_a \in \mathcal{R}} \mathbb{E}_{c_e \in E} \left[\|\epsilon_{\theta'}(c_e) - \epsilon_{\theta}(c_n)\|_2^2 + \lambda \|\epsilon_{\theta'}(c_a) - \epsilon_{\theta}(c_a)\|_2^2 \right]$

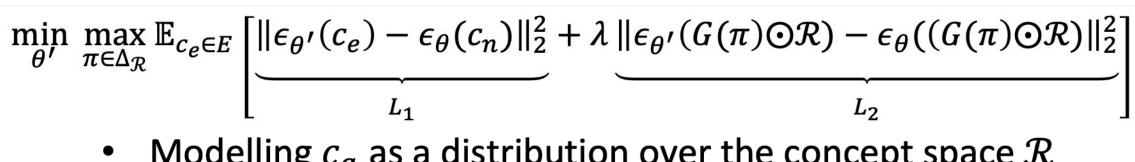
- Where:
- θ, θ' : original and sanitized models
- c_a : `Adversarial` concept, i.e., the concept will be affected most by the erasure
- \mathcal{R} : Concept space to search c_a
- Interpretation:
- Inner-Max: Find adversarial concept that is affected most by the erasure
- Outer-Min: Update model to erasure E and preserve c_a , simultaneously.

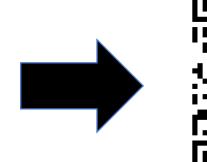
Finding Adversarial Concept with PGD

lnit $c_{a,t=0} = c_e$, e.g., $\triangleq \tau(\tilde{garbarge truck"})$

Iteratively update $c_{a,t+1} = c_a + \eta \nabla_{c_a} L_2$

However, c_a quickly converges to background noise/nonsense type of concept





Relaxation with Gumbel-Softmax

- Modelling c_a as a distribution over the concept space \mathcal{R}
- Searching π on the simplex $\Delta_{\mathcal{R}}$

EXPERIMENTAL RESULTS AND MORE

