

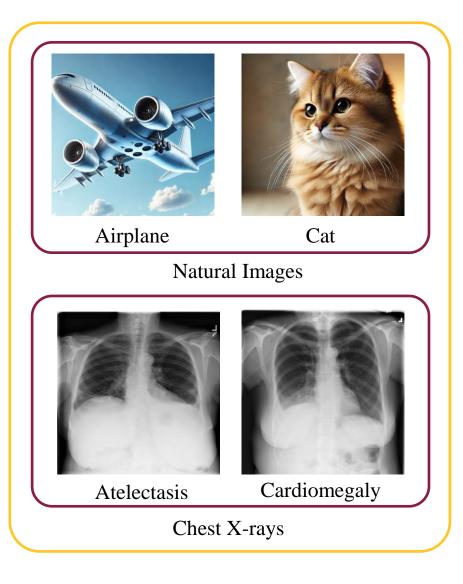
Learning Low-Rank Feature for Thorax Disease Classification

Authors: Rajeev Goel^{*1}, Yancheng Wang^{*1}, Utkarsh Nath¹, Alvin C. Silva², Teresa Wu¹, Yingzhen Yang¹

Affiliations: Arizona State University¹, Mayo Clinic Arizona²

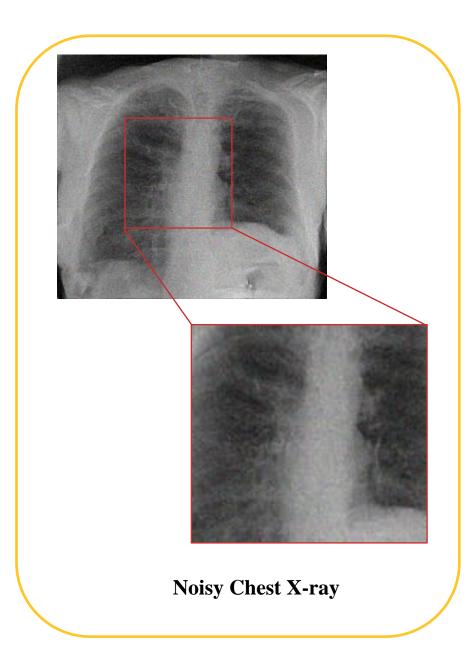
Introduction

- Advancements in AI: Growing use of AI in medicine
- Challenges in Medical Imaging:
 - Medical images differ from natural images
 - Unique structures and features
 - Fewer labeled medical images
 - Noise complicates disease classification

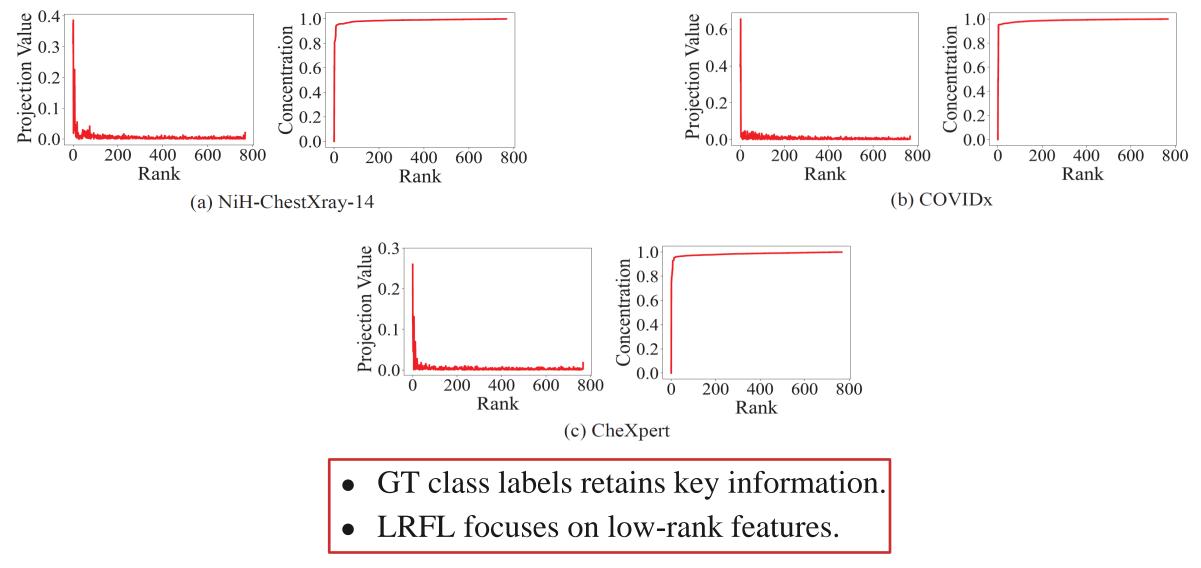


Problem

- Key Challenges:
 - Limited availability of annotated data
 - Subtle disease features
 - Noise and non-disease interference
- Our Approach:
 - LRFL: Extract low-rank features
 - Minimize noise and enhance accuracy



Copyright © 2023 Arizona Board of Regents



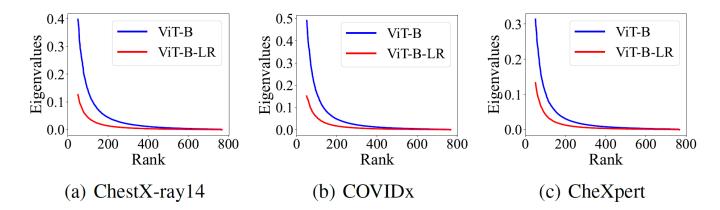
Novel Approximation

Algorithm 1 Training Algorithm with the Approximate Truncated Nuclear Norm by SGD

- 1: Initialize the weights \mathbf{W}_1 by $\mathbf{W}_1 = \mathbf{W}_1(0)$, and initialize \mathbf{W}_2 randomly
- 2: Compute feature **F** by the neural network, and its SVD as $\mathbf{F} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}$
- 3: Update $\overline{\mathbf{U}} = \mathbf{U}, \overline{\mathbf{V}} = \mathbf{V}$
- 4: for $t = 1, 2, ..., t_{\max}$ do
- 5: **if** $t \equiv 0 \pmod{t_0}$ then
- 6: Compute feature **F** of the neural network, and its SVD $\mathbf{F} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}$.
- 7: Update $\overline{\mathbf{U}} = \mathbf{U}, \overline{\mathbf{V}} = \mathbf{V}$
- 8: **end if**
- 9: **for** b = 1, 2, ..., B **do**
- 10: Update W by applying gradient descent on batch $\mathcal{B}_j \subseteq [n]$ using the gradient of the loss \mathcal{L}_j in Eq.(4)
- 11: **end for**
- 12: **end for**
- 13: return The trained weights \mathbf{W} of the network

- Novel Truncated Nuclear Norm (TNN) Approximation:
 - Unique low-rank approach.
 - Allows standard SGD optimization.
- Efficiency & Scalability:
 - SVD only after certain epochs to save computation
 - Scalable to large datasets, practical for real-world use.

Generalization Bound for LRFL



Theorem 1. For every x > 0, with probability at least $1 - \exp(-x)$, after the *t*-th iteration of gradient descent for all $t \ge 1$, we have

$$L_{\mathcal{D}}(\mathrm{NN}_{\mathbf{W}}) \leq \left\|\mathbf{Y} - \bar{\mathbf{Y}}\right\|_{\mathrm{F}} + c_1 \left(1 - \eta \widehat{\lambda}_r\right)^{2t} \left\|\mathbf{Y}\right\|_{\mathrm{F}}^2 + c_2 \min_{h \in [0,r]} \left(\frac{h}{n} + \sqrt{\frac{1}{n} \sum_{i=h+1}^r \widehat{\lambda}_i}\right) + \frac{c_3 x}{n},$$

where c_1, c_2, c_3 are positive constants.

- Theoretical Guarantee: Validates LRFL performance.
- **Reduced Overfitting**: Low-rank features effective with limited data.
- Better Generalization: Tighter error bounds vs. baselines.

Implementation Details and Results

Pipeline for Thorax Disease Classification

- Pre-training: Self-supervised learning with Masked Autoencoders (MAE)
- Fine-tuning: Cross-Entropy loss on target datasets
- LRFL fine-tuning: Using TNN regularization

Table 1: Performance comparisons between LRFL models and SOTA baselines on CheXpert. The best result is highlighted in bold, and the second-best result is underlined. This convention is followed by all the tables in this paper. DN represents DenseNet.

Method	Architecture	Rank	Atelectasis	Cardiomegaly	Consolidation	Edema	Effusion	mAUC (%)
Irvin et al.[12]		-	81.8	82.8	<u>93.8</u>	93.4	92.8	88.9
Pham et al. 9	DN121	-	82.5	85.5	93.7	93.0	92.3	89.4
Kang et al. [93]	DN121	-	82.1	85.9	94.4	89.2	93.6	89.0
MoCo v2 [2]	DN121	-	78.5	77.9	92.5	92.8	92.7	88.7
ViT-S [2]	ViT-S/16	-	83.5	81.8	93.5	94.0	93.2	89.2
ViT-S-LR (Ours)	ViT-S/16	0.05r	83.7	<u>86.3</u>	90.9	93.7	93.1	<u>89.6</u>
ViT-B [2]	ViT-B/16	-	82.7	83.5	92.5	93.8	94.1	89.3
ViT-B-LR (Ours)	ViT-B/16	0.05r	81.6	85.4	93.4	94.6	<u>93.9</u>	89.8

Table 2: Performance comparisons between LRFL models and SOTA baselines on COVIDx (in accuracy). DN represents DenseNet.

Method	Architecture	Rank	Covid-19 Sensitivity	Accuracy
COVIDNet-CXR Small [8]	-	-	87.1	92.6
COVIDNet-CXR Large [8]	-	- 96.8		94.4
MoCo v2 [2]	DN121	-	94.5	94.0
DN121 [2]	DN121	-	97.0	93.5
ViT-S [2]	ViT-S/16	-	94.5	95.2
ViT-S-LR (Ours)	ViT-S/16	0.01r	<u>97.5</u>	<u>96.8</u>
ViT-B [2]	ViT-B/16	-	95.5	95.3
ViT-B-LR (Ours)	ViT-B/16	0.003r	98.5	97.0

Visualizations

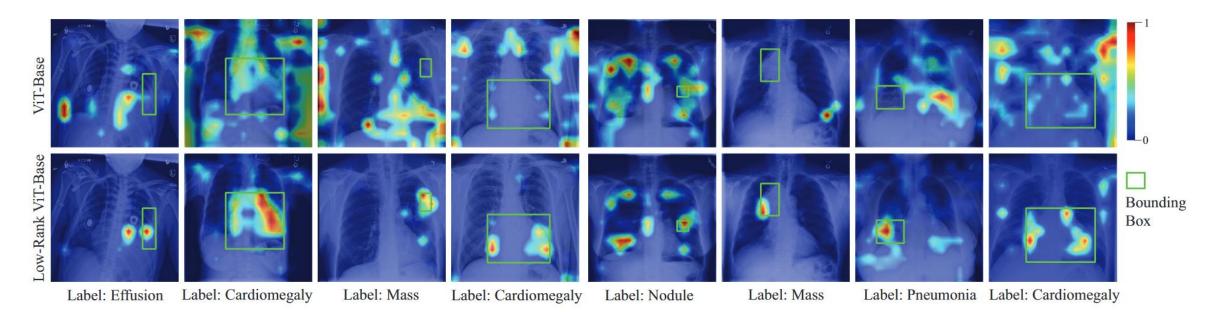


Figure 1: Grad-CAM visualization results on NIH ChestX-ray 14. The figures in the first row are the visualization results of ViT-Base, and the figures in the second row are the visualization results of Low-Rank ViT-Base.

Improved Results with Generative Data Augmentation

Table 3: Performance comparison of baseline models and LRFL models on the CheXpert and COVIDx datasets, with and without synthetic data. *n* denotes the number of training images in the respective dataset.

Method	Architecture	CheXpert			COVIDx			
		Rank	# Synthetic Images	mAUC (%)	Rank	# Synthetic Images	Accuracy (%)	
ViT-S [2]	ViT-S/16	-	-	89.2	-	-	95.2	
ViT-S-LR (Ours)	ViT-S/16	0.05r	-	89.6	0.01r	-	96.8	
ViT-S (Ours)	ViT-S/16	-	0.2n	89.3	-	1.0n	97.0	
ViT-S-LR (Ours)	ViT-S/16	0.05r	0.2n	89.7	0.01r	1.0n	<u>97.3</u>	
ViT-B [2]	ViT-B/16	-	-	89.3	-	-	95.3	
ViT-B-LR (Ours)	ViT-B/16	0.025r	-	89.8	0.003r	-	97.0	
ViT-B (Ours)	ViT-B/16	-	0.25n	<u>89.9</u>	-	1.0n	97.0	
ViT-B-LR (Ours)	ViT-B/16	0.025r	0.25n	90.4	0.003r	1.0n	97.5	

Contributions

- Novelty: Introduction of a separable approximation for the TNN
- Theoretical Foundation: Sharp generalization bound
- **Performance**: Improvements in classification accuracy and mAUC
- Impact: Effective noise reduction and improved disease localization

Our paper is available at https://openreview.net/pdf?id=GkzrVxs9LS

