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Motivation and Contribution

▪ Logical Credal Networks or LCNs

– Many (if not all) real-world applications require:

▪ Efficient handling of uncertainty

▪ Compact representations of a wide variety of knowledge

– Logical Credal Networks – a novel probabilistic logic:

▪ Allows marginal and conditional probability bounds on logic formulas

▪ Markov condition: additional independence assumptions between atoms

▪ Exact and approximate marginal inference

▪ Abductive Reasoning in LCNs

– MAP and Marginal MAP inference in LCNs (explanations)

– Exact and approximate MAP/MMAP inference algorithms

– Promising experimental results on synthetic and realistic benchmarks
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Logical Credal Networks

▪ A set of probability-labeled sentences of the following form:

– where 𝑞 and 𝑟 can be arbitrary propositional or first-order logic* formulas, 𝑙𝑞 and 𝑢𝑞 (resp., 

𝑙𝑞|𝑟 and 𝑢𝑞|𝑟) are lower and upper probability bounds

– a label 𝜏 ∈ {𝑦𝑒𝑠, 𝑛𝑜} indicates independence between the atoms in 𝑞 (details to follow)

▪ Represents set of probability distributions over all interpretations satisfying LCN’s constraints

𝑙𝑞 ≤ 𝑃 𝑞 ≤ 𝑢𝑞

𝑙𝑞|𝑟 ≤ 𝑃 𝑞 𝑟 ≤ 𝑢𝑞|𝑟

Friends of friends are likely friends. If two people are friends, they likely 
either both smoke or neither does. Smoking likely causes cancer.

*universally quantified FOL with finite domains of values

[Marinescu et al, NeurIPS 2022]
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Example

▪ Bronchitis (B) is more likely than Smoking (S); Smoking may cause Cancer (C) or 

Bronchitis; Dyspnea (D) or shortness of breath is a common symptom for Cancer and 

Bronchitis; in case of Cancer we have either a positive X-Ray result (X) and Dyspnea, or a 

negative X-Ray and no Dyspnea. The figure above shows the primal graph where the 

formula and proposition nodes are displayed as rectangles and shaded circles, respectively.
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Local Markov Condition

▪ Let ℒ be an LCN, and ℳ be a model* of ℒ. Given M, every atom 𝑥 is conditional independent 

of its non-descendant non-parent (ndnp) atoms given its parents in the primal graph 𝐺 of ℒ.

▪ We are now ready to make quantitative commitments (i.e., explicit independence assumptions)

▪ Let 𝑥 be an atom, 𝑆𝑥 = {𝑠1, … , 𝑠𝑘} and 𝑇𝑥 = {𝑡1, … , 𝑡𝑙} be its parents and ndnp’s sets in 𝐺
– we assert 𝑃 𝑥 𝑆𝑥 , 𝑇𝑥 = 𝑃(𝑥|𝑆𝑥) or equivalently 𝑃 𝑥, 𝑆𝑥 , 𝑇𝑥 ⋅ 𝑃 𝑆𝑥 = 𝑃 𝑥, 𝑆𝑥 ⋅ 𝑃(𝑆𝑥 , 𝑇𝑥)  

0.1 ≤ 𝑃 𝑏 ≤ 0.2

0.05 ≤ 𝑃 𝑒 ≤ 0.1

0.8 ≤ 𝑃 𝑎 𝑏 ∨ 𝑒 ≤ 0.9

0.7 ≤ 𝑃 ¬(𝑐 ⊕ 𝑑) 𝑎 ≤ 0.8

0.01 ≤ 𝑃 𝑎 ≤ 0.08

𝜏 = 𝑛𝑜

𝑏 𝑒

𝑎

𝑐 𝑑

𝑏 ∨ 𝑒

¬(𝑐 ⊕ 𝑑)

𝑃 𝑏|𝑒 = 𝑃 𝑏

𝑃 𝑐|𝑏, 𝑒, 𝑎, 𝑑 = 𝑃 𝑐|𝑎, 𝑑

𝑃 𝑑|𝑏, 𝑒, 𝑎, 𝑐 = 𝑃 𝑑|𝑎, 𝑐

𝑏 and 𝑒 are independent
𝑐 is CI of {𝑏, 𝑒} given {𝑎, 𝑑}
𝑑 is CI of {𝑏, 𝑒} given {𝑎, 𝑐}
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Marginal Inference in LCNs

▪ Given a query formula 𝜌, compute posterior lower and upper bounds on 𝑃(𝜌)
– Let 𝑥 be an atom, 𝑆𝑥 = {𝑠1, … , 𝑠𝑘} and 𝑇𝑥 = {𝑡1, … , 𝑡𝑙} be its parents and ndnp’s sets in 𝐺 

we assert 𝑃 𝑥 𝑆𝑥 , 𝑇𝑥 = 𝑃(𝑥|𝑆𝑥) or equivalently 𝑃 𝑥, 𝑆𝑥 , 𝑇𝑥 ⋅ 𝑃 𝑆𝑥 = 𝑃 𝑥, 𝑆𝑥 ⋅ 𝑃(𝑆𝑥 , 𝑇𝑥)  

𝑙𝑞 ≤ 𝑃 𝑞 ≤ 𝑢𝑞

𝑙𝑞|𝑟 ≤ 𝑃 𝑞 𝑟 ≤ 𝑢𝑞|𝑟

𝑛 atoms, 𝑁 = 2𝑛 interpretations (worlds)

Ԧ𝑝 = (𝑝1, … , 𝑝𝑁) probability vector

Ԧ𝐴𝑞 = (𝑎1, … , 𝑎𝑁) indicator vector, 
     𝑎𝑖 = 1 if 𝑞 is true in 𝑖𝑡ℎ interpretation
     𝑎𝑖 = 0, otherwise

⊙ is the dot-product of two vectors

𝑃 𝑥, 𝑆𝑥, 𝑇𝑥 ⋅ 𝑃 𝑆𝑥 − 𝑃 𝑥, 𝑆𝑥 ⋅ 𝑃 𝑆𝑥, 𝑇𝑥 = 0 

𝛼 = 𝑥 ∧ 𝑠1 ∧ ⋯ ∧ 𝑠𝑘 ∧ 𝑡1 ∧ ⋯ ∧ 𝑡𝑙

𝛽 = 𝑠1 ∧ ⋯ ∧ 𝑠𝑘

𝛾 = 𝑥 ∧ 𝑠1 ∧ ⋯ ∧ 𝑠𝑘

𝛿 = 𝑠1 ∧ ⋯ ∧ 𝑠𝑘 ∧ 𝑡1 ∧ ⋯ ∧ 𝑡𝑙
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MAP and Marginal MAP Inference

▪ Up until now, focus was on computing a probability interval 𝑃 𝑞 ∈ [𝑃 𝑞 , 𝑃 𝑞 ] for a given 

query formula 𝑞

▪ MAP/MMAP inference calls for finding the most probable (complete or partial) explanation of 

observed evidence in an LCN

[Marinescu et al, NeurIPS 2024]

𝑆

𝐵 𝐶

𝑋𝐷

𝐵 ∨ 𝐶

¬(𝑋 ⊕ 𝐷)

𝐵 ∧ 𝐶

0.3 ≤ 𝑃 𝑆 ≤ 0.4

0.1 ≤ 𝑃 𝐵 ∨ 𝐶 𝑆 ≤ 0.2

0.6 ≤ 𝑃 𝐷 𝐵 ∧ 𝐶 ≤ 0.7

0.7 ≤ 𝑃 ¬(𝑋 ⊕ 𝐷) 𝐶 ≤ 0.8

0.05 ≤ 𝑃 𝐵 ≤ 0.1

Evidence: ¬𝐵, 𝐶 MAP: S, D, X
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MAP and MMAP Tasks in LCNs

▪ Define maximin and maximax MAP/MMAP tasks as follows:
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Exact MAP/MMAP Algorithms

▪ Depth-First Search (DFS)

– Depth-first search traversal of the search space defined by the MAP propositions 𝑌 

– At each leaf node 𝑦, evaluate exactly the lower probability of the query formula 𝜓𝑦∧𝑒  i.e., 

𝑦1 ∧ ⋯ ∧ 𝑦𝑘 ∧ 𝑒1 ∧ ⋯ ∧ 𝑒𝑚

– Return the optimal configuration 𝒚∗ with maximum lower probability.

▪ Limited Discrepancy Search (LDS)

– Depth-first search traversal with max discrepancy 𝛿 ≥ 1 [Harvey and Ginsberg, 1995]

– As before, evaluate exactly the lower probability of the query formula 𝜓𝑦∧𝑒

– Return the best configuration ො𝑦 found so far

▪ If max discrepancy 𝛿 = |𝑌| then LDS is optimal, namely returns 𝒚∗ with maximum lower 

probability.

▪ Simulated Annealing (SA)

– Stochastic local search-based traversal of the MAP search space

– For each configuration y evaluate exactly the lower probability of the query formula 𝜓𝑦∧𝑒

– SA converges to the optimal solution if the temperature decays slowly enough
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Approximate MAP/MMAP Algorithms

▪ Approximate MAP (AMAP)

– Message-passing scheme

– Extends ARIEL scheme to approximate lower/upper probability of a MAP configuration

– Using an augmented LCN (more details in [Marinescu et al, NeurIPS 2024])

▪ Approximate Limited Discrepancy Search (ALDS)

– Traverse the MAP search space using LDS(𝛿)

– Estimate the lower probability of each MAP configuration using AMAP

– Keep track of the configuration with the largest estimate

▪ Approximate Simulated Annealing (ASA)

– Traverse the MAP search space using SA

– Estimate the lower probability of each MAP configuration using AMAP

– Keep track of the configuration ො𝑦 with the largest estimate

▪ No guarantees regarding optimality nor we can guarantee lower/upper bounds
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Augmented LCN

Evidence: ¬𝐵, 𝐶
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MAP/MMAP Inference in LCNs

Depth-First Search

Simulated Annealing

Exact Approximate

Limited Discrepancy Search

Iterative Message Passing

Simulated Annealing

Limited Discrepancy Search

Exact evaluation 
of the MAP configurations

Approximate evaluation 
of the MAP configurations
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Outline

▪ Motivation and Contribution

▪ Logical Credal Networks

▪ Marginal and MAP/MMAP Inference

▪ Experimental Results

▪ Conclusion

Code* available at: http://github.com/IBM/LCN

http://github.com/IBM/LCN
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Results – MAP Inference

▪ Benchmark problems:

– Random LCNs

– LCNs derived from real-world Bayesian networks

[Marinescu et al., NeurIPS 2024 ]

Real-world LCNs
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Conclusion

▪ New probabilistic logic that expresses probability bounds for propositional and first-order logic 

formulas with few restrictions

▪ Local Markov condition (like in probabilistic graphical models) allows making additional 

independence assumptions

– Restricts the space of probability distributions to enable meaningful representations of 

uncertainty

▪ Exact inference (marginal, MAP) to answer queries for the new formalism

– Involves the solution of a non-linear constraint program

▪ Approximate inference (marginal, MAP) scales to larger problems

– Involves message-passing along the edges of a factor graph

▪ Empirical evaluations on random problems and more realistic applications shows promising 

results, particularly in aggregating multiple sources of knowledge
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