

MVSDet: Multi-View Indoor 3D Object Detection via Efficient Plane Sweeps

Yating Xu¹, Chen Li², Gim Hee Lee¹ National University of Singapore¹, A*STAR²

Multi-View Indoor 3D Object Detection

- Task Definition: It predicts 3D bounding box of objects in the scene and their corresponding classes from *N posed images*.
- Challenge: How to estimate geometry information from 2D images alone?
- Existing work:

Image source: Xu et al, "NeRF-Det: Learning Geometry-Aware Volumetric Representation for Multi-View 3D Object Detection", ICCV 2023.

Multi-View Indoor 3D Object Detection

• Limitation of existing work: inaccurate geometry estimation

• Our solution: **MVSDet**

Method Overview

Probabilistic sampling and soft weighting

- Goal: efficiently learn geometry *without* sampling many depth planes.
- Method:
 - Sample **top-k** depth proposals $\{d_{idx_1}, ..., d_{idx_k}\}$ with normalized probability score $\{\widetilde{B}_{idx_1}, ..., \widetilde{B}_{idx_k}\}$
 - Feature back-projection to 3D voxel center p from *i*-th image:

$$\tilde{\mathbf{f}}_i = \begin{cases} \tilde{B}^i_{\phi(\mathbf{p})} \mathbf{f}_i & \text{if } \mathbf{d}(\mathbf{p}) \subset \{\mathbf{d}_{\mathrm{idx}_1}, \dots, \mathbf{d}_{\mathrm{idx}_k}\}\\ 0 & \text{otherwise} \end{cases}$$

Pixel-aligned Gaussian Splatting (PAGS)

Goal: enhance depth prediction *without* much computation overhead. •

- Key idea: A key to PAGS is the *correct positioning* of the
- Method: place Gaussian centers M_{μ} according to the

$$\mathbf{I}_{\mu}(r) = \mathbf{o}(r) + \hat{\mathbf{D}}(r)\mathbf{h}(r), \quad \mathbf{D} = \mathbf{BG}$$

Optimization • $\mathcal{L}_{render} = ||\hat{C}_{color} - C_{color}||^2$ $\mathcal{L} = \mathcal{L}_{det} + \mathcal{L}_{render}$

Experiments

We use M=12 depth planes by default.

Table 1: Results on ScanNet. "GT Geo" denotes whether ground truth geometry is used as supervision during training. Table 2: Results on ARKitScenes. "GT Geo" denotes whether ground truth geometry is used as supervision during training.

Method	GT Geo	mAP@.25	mAP@.5	Method	GT Geo	mAP@.25	mAP@.5	
ImGeoNet[18]	~	54.8	28.4	ImGeoNet[18]	\checkmark	60.2	43.4	
CN-RMA [16]	\checkmark	58.6	36.8	CN-RMA [16]	\checkmark	67.6	56.5	_
ImVoxelNet [15]	_	46.7	23.4	ImVoxelNet [15]	_	27.3	4.3	_
NeRF-Det [21]	-	53.5	27.4	NeRF-Det [21]	-	39.5	21.9	
Ours	_	56.2	31.3	Ours	-	42.9	27.0	

Qualitative Results

Thank You!