

Bayesian Domain Adaptation with Gaussian Mixture Domain-Indexing

Yanfang Ling, Jiyong Li, Lingbo Li, Shangsong Liang*

Speaker: Yanfang Ling Sun Yat-sen University, China lingyf3@mail2.sysu.edu.cn

- Background and Motivation
- Methodology
 - Mixture of Domain Index Distributions
 - Generative Process of GMDI
 - Variational Inference
- Theory
- Experimental Results
- Conclusion

- Background and Motivation
- Methodology
 - Mixture of Domain Index Distributions
 - Generative Process of GMDI
 - Variational Inference
- Theory
- Experimental Results
- Conclusion

Background and Motivation

- Limitation of the domain indices space.
 - A single Gaussian distribution struggles to adequately fit the domain indices, neglecting the inherent structures among different domains.
 - Motivate us to model domain indices as a Gaussian mixture distribution, with the number of mixture components dynamically determined by a Chinese Restaurant Process.
 - The mixtures of distributions provide a higher level of flexibility in a larger latent space, thereby increasing the capability to adapt to various target domains with domain shift.

- Background and Motivation
- Methodology
 - Mixture of Domain Index Distributions
 - Generative Process of GMDI
 - Variational Inference
- Theory
- Experimental Results
- Conclusion

Methodology

- Problem Formulation
 - Unsupervised domain adaptation:
 - Given N domains with domain identity, and each domain contains D_w data points;
 - N domains are divided into source domains with labeled data and target domains with unlabeled data.
 - We aim to:
 - Predict the label y of target domain data;
 - Infer local domain index u and global domain index θ .

- Background and Motivation
- Methodology
 - Mixture of Domain Index Distributions
 - Generative Process of GMDI
 - Variational Inference
- Theory
- Experimental Results
- Conclusion

Methodology

- **Mixture of Domain Index Distributions**
 - VDI: •
 - Global domain index θ follow certain distribution. •

$$p(y, \boldsymbol{x} \mid \boldsymbol{\varepsilon}) = \int p(\boldsymbol{\theta} \mid \boldsymbol{\varepsilon}) p(\boldsymbol{u} \mid \boldsymbol{\theta}) p(\boldsymbol{x} \mid \boldsymbol{u}) p(\boldsymbol{z} \mid \boldsymbol{x}, \boldsymbol{u}, \boldsymbol{\theta}) p(y \mid \boldsymbol{z}) d\boldsymbol{z} d\boldsymbol{u} d\boldsymbol{\theta}$$

- GMDI: •
 - Global domain index θ follow a GaussianMixture • Model (GMM).

- Background and Motivation
- Methodology
 - Mixture of Domain Index Distributions
 - Generative Process of GMDI
 - Variational Inference
- Theory
- Experimental Results
- Conclusion

Methodology

- Generative Process of GMDI
 - Chinese Restaurant Process (CRP) prior on v:

$$P(v = k) = \begin{cases} \frac{n_k}{N - 1 + \alpha} \text{ if the cluster } k \text{ exists }, \\ \frac{\alpha}{N - 1 + \alpha} \text{ if cluster } k \text{ is a new cluster }, \end{cases}$$

• Generative process of GMDI:

$$\begin{split} v \mid \boldsymbol{\pi} &\sim \operatorname{Categorical}_{\infty}(\boldsymbol{\pi}) \,, \\ \boldsymbol{\theta}^{v=k} &\sim \mathcal{N}(\boldsymbol{\mu}_{k}, \boldsymbol{\sigma}_{k}^{2}) \,, \\ \boldsymbol{u} \mid \boldsymbol{\theta}^{v=k} &\sim p(\boldsymbol{u} \mid \boldsymbol{\theta}^{v=k}) \,, \\ \boldsymbol{x} \mid \boldsymbol{u} &\sim p(\boldsymbol{x} \mid \boldsymbol{u}) \,, \\ \boldsymbol{z} \mid \boldsymbol{x}, \boldsymbol{u}, \boldsymbol{\theta}^{v} &\sim p(\boldsymbol{z} \mid \boldsymbol{x}, \boldsymbol{u}, \boldsymbol{\theta}^{v}) \,, \end{split}$$

- Background and Motivation
- Methodology
 - Mixture of Domain Index Distributions
 - Generative Process of GMDI
 - Variational Inference
- Theory
- Experimental Results
- Conclusion

Methodology

- Variational Inference
 - Variational Posterior:

 $q(\boldsymbol{u}, \boldsymbol{\theta}, \boldsymbol{z}, v, \boldsymbol{\beta} \mid \boldsymbol{x}) = q(\boldsymbol{\beta}; \boldsymbol{\gamma})q(v; \boldsymbol{\eta})q(\boldsymbol{u} \mid \boldsymbol{x}; \boldsymbol{\psi}_u)q(\boldsymbol{\theta}^v \mid \boldsymbol{u}; \boldsymbol{\psi}_\theta)q(\boldsymbol{z} \mid \boldsymbol{x}, \boldsymbol{u}, \boldsymbol{\theta}^v; \boldsymbol{\psi}_z)$

• Evidence Lower Bound (ELBO):

$$\begin{aligned} \mathcal{L}_{\text{ELBO}} &= \mathbb{E}_{q(\boldsymbol{u},\boldsymbol{\theta}^{v},\boldsymbol{z}|\boldsymbol{x};\boldsymbol{\phi})q(v;\boldsymbol{\eta})} [\log p(\boldsymbol{y}|\boldsymbol{z})] + \mathbb{E}_{q(\boldsymbol{u}|\boldsymbol{x};\boldsymbol{\psi}_{u})} [\log p(\boldsymbol{x}|\boldsymbol{u})] \\ &+ \mathbb{E}_{q(v;\boldsymbol{\eta})q(\boldsymbol{\beta};\boldsymbol{\gamma})q(\boldsymbol{u}|\boldsymbol{x};\boldsymbol{\psi}_{u})q(\boldsymbol{\theta}^{v}|\boldsymbol{u};\boldsymbol{\psi}_{\theta})} [\log p(\boldsymbol{u}|\boldsymbol{\theta}^{v})] - \text{KL}[q(\boldsymbol{\beta};\boldsymbol{\gamma})||p(\boldsymbol{\beta})] \\ &- \mathbb{E}_{q(\boldsymbol{\beta};\boldsymbol{\gamma})} [\text{KL}[q(v;\boldsymbol{\eta})||p(v|\boldsymbol{\beta};\boldsymbol{\psi}_{v})]] - \mathbb{E}_{q(\boldsymbol{u}|\boldsymbol{x};\boldsymbol{\psi}_{u})q(v;\boldsymbol{\eta})} [\text{KL}[q(\boldsymbol{\theta}^{v}|\boldsymbol{u};\boldsymbol{\psi}_{\theta})||p(\boldsymbol{\theta}^{v})]] \\ &- \mathbb{E}_{q(v;\boldsymbol{\eta})q(\boldsymbol{u},\boldsymbol{\theta}^{v}|\boldsymbol{x};\boldsymbol{\xi})} [\text{KL}[q(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{u},\boldsymbol{\theta}^{v};\boldsymbol{\psi}_{z})||p(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{u},\boldsymbol{\theta}^{v})]] \\ &- \mathbb{E}_{q(\boldsymbol{u}|\boldsymbol{x};\boldsymbol{\psi}_{u})} [\log q(\boldsymbol{u}|\boldsymbol{x};\boldsymbol{\psi}_{u})], \end{aligned}$$

- Background and Motivation
- Methodology
 - Mixture of Domain Index Distributions
 - Generative Process of GMDI
 - Variational Inference
- Theory
- Experimental Results
- Conclusion

Theory

• Final Objective Function:

 $\mathcal{L}_{\text{GMDI}} = \max \min_{D} \mathcal{L}_{\text{ELBO}} - \lambda * \mathcal{L}_{\text{D}}$

• Theorem(optimum):

 $(1)I(\boldsymbol{z};\boldsymbol{\theta}) = I(\boldsymbol{z};w|\boldsymbol{\theta}) = 0,$ $(2)I(\boldsymbol{y};\boldsymbol{z}) \text{ and } I(\boldsymbol{x};\boldsymbol{u},\boldsymbol{\theta},\boldsymbol{z},v) \text{ are maximized,}$ $(3)\text{KL}[q(\boldsymbol{u},\boldsymbol{\theta},v,\boldsymbol{z}|\boldsymbol{x})||p(\boldsymbol{u},\boldsymbol{\theta},v,\boldsymbol{z})] = 0 \text{ and } \text{KL}[q(\boldsymbol{x}|\boldsymbol{u},\boldsymbol{\theta},v,\boldsymbol{z})||p(\boldsymbol{x}|\boldsymbol{u},\boldsymbol{\theta},v,\boldsymbol{z})] = 0.$

• Tighter Upper Bound of the Objective:

 $\mathcal{L}_{\text{VDI-ELBO}} \leq \mathcal{L}_{\text{ELBO}} \leq \log p(\boldsymbol{x}, y) \text{ and } \mathcal{L}_{\text{VDI}} \leq \mathcal{L}_{\text{GMDI}}.$

- Background and Motivation
- Methodology
 - Mixture of Domain Index Distributions
 - Generative Process of GMDI
 - Variational Inference
- Theory
- Experimental Results
- Conclusion

Experimental Results

• Accuracy on binary classification tasks (Circle, DG-15, and DG-60) and 4-way classification task (CompCars):

	Method										
Dataset	Source-only	DANN	ADDA	CDANN	MDD	SENTRY	D2V	VDI	GMDI (Ours)		
Circle	55.5	53.4	56.2	54.9	53.4	59.5	60.1	94.3	96.9		
DG-15	39.7	43.3	33.5	38.8	37.2	42.6	79.9	94.7	96.5		
DG-60	55.0	66.3	60.8	65.3	54.6	51.3	82.1	95.9	99.3		
CompCars	39.1	38.9	42.8	41.8	41.4	41.8	40.7	42.5^{2}	44.4		

Experimental Results

MSE for various DA methods in both tasks W (6) → E (42) and N (24) → S (24) on TPT-48. We report
the average MSE of all domains as well as more detailed average MSE of level-1, level-2, level-3 target
domains, respectively:

Task	Domain	Source-only	DANN	ADDA	CDANN	MDD	SENTRY	VDI	GMDI(Ours)
W (6) \rightarrow E (42)	Average of 4 level-1 domains Average of 6 level-2 domains Average of 32 level-3 domains	1.184 3.128 5.272	1.984 5.112 5.880	5.448 7.624 7.256	6.168 7.016 6.986	5.544 7.912 8.008	2.515 5.136 5.872	2.160 3.000 2.448	1.346 2.393 2.122
	Average of all 42 domains	4.576	5.400	7.136	6.896	7.76	5.456	2.496	2.087
$N(24) \rightarrow S(24)$	Average of 10 level-1 domains Average of 6 level-2 domains Average of 8 level-3 domains	1.648 3.128 9.280	1.832 3.296 6.744	5.872 6.888 7.088	1.832 2.856 7.688	2.736 6.144 10.608	3.976 3.760 3.672	1.536 2.584 5.624	1.479 2.119 3.942
	Average of all 24 domains	4.560	3.840	6.528	4.040	6.216	3.816	3.160	2.493

Experimental Results

• MSE of domain indices on Circle and TPT-48($N \rightarrow S, W \rightarrow E$) datasets:

- Background and Motivation
- Methodology
 - Mixture of Domain Index Distributions
 - Generative Process of GMDI
 - Variational Inference
- Theory
- Experimental Results
- Conclusion

Conclusion

- GMDI, a novel Gaussian Mixture Domain-Indexing algorithm, to address the challenge of **inferring domain indices when they are unavailable**.
- GMDI is the first one to utilize a **mixture of dynamic Gaussians**. The number of mixture components is determined adaptively by the **Chinese Restaurant Process**, enhancing the flexibility and effectiveness of domain adaptation.
- Our theoretical analysis confirms that GMDI achieves a more stringent evidence lower bound, closer to the log-likelihood.
- Extensive experiments validate the effectiveness of GMDI in inferring domain indices and highlight its potential practical applications

Thank you!

Code