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Problem!

Model 
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Making the model fairer can reduce model accuracy.

As the model 
becomes fairer

the model 
accuracy 
decreases
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Training classifiers which are gender agnostic is more challenging for Dataset B than for Dataset A
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Problem statement

We cannot obtain the exact ground-truth 
tradeoff curve            :

- We only have access to finite dataset
- The constrained optimisation 

problem shown above is non-trivial 
to solve

- Can be computationally expensive

Fairness loss
E.g. demographic parity Model accuracy

Increasing 
“Unfairness”



Methodology – Overview



Methodology

Fairness loss
E.g. demographic parity Model accuracy

Increasing 
“Unfairness”

Step I – Computationally Efficient Estimation:
Estimate the trade-off curve            by training a 
single model



Methodology

Step II – Calibration:
Using a held-out dataset, we construct 
confidence intervals which are going to 
contain the ground truth with probability at 
least 

≈

Fairness loss
E.g. demographic parity Model accuracy

Step I – Computationally Efficient Estimation:
Estimate the trade-off curve            by training a 
single model

Increasing 
“Unfairness”



Experimental results
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Adult data experiments

X: data for some employees A: gender Y: whether salary is above $50k

Trade-off Estimation
● YOTO trade-off curve is 

consistent with separately 
trained model

Confidence Intervals
● The Asymptotic Intervals 

are informative and cover 
the baselines

● Hoeffding’s Intervals are 
conservative
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Key Takeaways 

● The severity of accuracy-fairness trade-off fundamentally 

depends on dataset characteristics such as dataset imbalances 

or biases.

● We propose a computationally efficient approach to capture 

the fairness-accuracy trade-offs inherent to individual 

datasets, backed by sound statistical guarantees.

● The methodology provides the capability to specify desired 

accuracy levels and promptly receive corresponding admissible 

fairness violation ranges at inference time.



Thank you!

Check out our paper for additional details


