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MOTIVATION

Try to Push
the cube.

“Unpushable”
(High Friction)

Keep still

Pushable
(Low Friction)

Moving

● Meta-Reinforcement Learning (Meta-RL) agents can struggle to generalise across tasks with varying 
environmental features that require different optimal skills (i.e., different modes of behaviors). 

Liftable 
(Low Mass)

Unliftable 
(High Mass)

…

Push skill: Move the cube on the table.
Pick&Place skill: Pick the cube off the table and place it to the goal position.



CONTRASTIVE LEARNING

• Issue (i): Existing context encoders based on 
contrastive learning do not distinguish tasks that 
require different skills.

• Issue (ii): Existing 𝐾-sample MI estimators, 
such as InfoNCE, are sensitive to the sample 
size 𝐾 (i.e., the log-𝐾 curse).

Integrating contrastive learning with Meta-RL brings significant advances, but:

Pick&Place

Push 😁🤔
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SKILL-AWARE MUTUAL INFORMATION

Step 1: An objective for a context encoder -- Skill-aware Mutual Information (SaMI): 

SaMI is a generalised form of MI objective between context embeddings, skills, and trajectories: 
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✨ Compress skill-related information from trajectories
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Push

Pick&Place

✨ Smaller and easier to optimise
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A policy 𝜋 conditioned on a fixed context embedding 𝑐 is 
defined as a skill 𝜋 ⋅ 𝑐 (shortened as 𝜋!).
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SKILL-AWARE NOISE CONTRASTIVE ESTIMATION

Step 2: A K-sample estimator for 𝑰𝑺𝒂𝑴𝑰 -- Skill-aware Noise Contrastive Estimation (SaNCE): 

✨With the same training epochs, 𝐼&'()* is closer to 𝑰𝑺𝒂𝑴𝑰 compared to 𝐼+,-.()*. 

𝑰𝑺𝒂𝑵𝑪𝑬(𝒄;𝝅𝒄; 𝝉𝒄)
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How to sample positive/negative samples 𝒄𝟏, , 𝝉𝒄𝟏?𝝅𝒄𝟏



SKILL-AWARE TRAJECTORY SAMPLING STRATEGY

Step 3: Skill-aware trajectory sampling strategy

positive skills 𝝅𝒄0 are defined as optimal skills achieving highest return;

negative skills 𝝅𝒄1 are those that result in lower returns.

Context Encoder
𝜓Replay Buffer

for a cube-moving task 𝑒,
with high friction

Reinforcement 
Learning RL Loss

Ranked by 
∑-.//01𝑅(𝑠-, 𝑎-)

Momentum
Context Encoder
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Quer𝑖𝑒𝑠 𝜓(𝜏3,
0 )

SaNCE Loss

Negative samples 𝜏3-: / ,5:7
8

𝑤𝑖𝑡ℎ 𝑚𝑖𝑛∑-.//01𝑅(𝑠-, 𝑎-)
Negative embeddings
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Push

Pick&Place

Positive sample𝑠 𝜏3,
0

Positive embeddings
𝜓∗(𝜏3,

0 )
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Positive Samples 𝜏3,
0
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A practical framework for using SaNCE in the meta-training phase. 



SKILL-AWARE TRAJECTORY SAMPLING STRATEGY

Step 3: Skill-aware trajectory sampling strategy

Task 1 Task 2

Pick&Place

Push Task 3

Task 4

Flip

…



EXPERIMENT SETUP

(a) Panda-gym

Moderate 
Test Tasks

(b) Task setting

Training Tasks

Extreme Test Tasks

Zero-shot generalisation:
Moderate test tasks: interpolation
Extreme test tasks:  extrapolation (unseen mass/friction values)
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Clamp, Pick&Place Clamp, Drop, Pick&Place tighter Clamp, Fail, Push (Drag)

Clamp, Pick&Place Clamp, Drop, Pick&Place tighter

🚫

Clamp, Pick&Place Clamp, Fail, Push (Slide) Clamp, Fail, Push (Slide)



Try to Pick.

An effective 
exploration

Success

Pick&Place

Drop

Pick&Place
tighter

Fail

Push (Drag)

Push (Slide)

Pick&Place

Push 😁



Ant

Crippled Ant

Half-cheetah

Crippled 
Half-cheetah

SlimHumanoid Hopper

Humanoid
Standup

Walker

Crippled 
Hopper

Crippled 
Walker

SaCCM
(ours)

CCM

Our code, video demos 
and experimental data.

CODE



Use our SaMI learning objective 
to incentivise Meta-RL agents to 

be versatile and zero-shot 
generalise across tasks!

Without any prior skill distribution, 
a set of skills applicable to many tasks 
emerges solely from the SaMI learning 
objective and the data provided. 

BENCHMARK

Our code, video demos 
and experimental data.

CODE

PAPER

NeurIPS 2024
👋 Thu 12 Dec 4:30 p.m. PST -- Poster Session 4


