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StarCraft II

[Mathieu et al., 2021]

Dota 2

[Berner et al., 2019]

Deep MARL has been successful

Autonomous Robots

[Chen et al., 2020]
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AlphaStar

[Mathieu et al., 2021]

16 TPUs

~14 days

OpenAI Five

[Berner et al., 2019]

>1000 GPUs

∼180 days

Deep MARL is costly

Function 

Approximation

Agent
Deep Neural Network

Parameters up to several Gigabytes
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• Drop connections based on magnitudes

• Explore new connections based on gradients [Evci et al., 2020]

Dynamic sparse training

Dense Network Sparse Initialization Link Drop Link Grow
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Comparison of different sparse training methods.

• SS: static sparse networks

• SET [Mocanu et al., 2018]

➢ Existing DST method 1

• RigL [Evci et al., 2020]

➢ Existing DST method 2

• RLx2 [Tan et al., 2023]

➢ Single-Agent DST method

• MAST: our proposed method
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Can we train deep MARL agents effectively using 

ultra-sparse networks throughout?
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TD target   𝒯𝑄1    𝒯𝑄2   𝒯𝑄3

Iter 0      0.9      0.0     0.9                  

Iter 1       1.7       1.7      2.0                  

Iter 2      2.9      2.4     3.0                  

… …

Issue 1: Inaccurate learning target (1)

Generated by sparse value networks.

D

Existence of a best step length.

(𝑠𝑡 , 𝑎𝑡) 𝑄(𝑠𝑡 , 𝑎𝑡)

The expected TD error:
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Issue 1: Inaccurate learning target (1)

Improving the reliability of training targets.

• For MARL

➢ The optimal step length varies

➢ Fixed-length multi-step target 

[Tan et al., 2023] is not feasible.

D TD(λ) Target
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Issue 1: Inaccurate learning target (2)

Reducing overestimation of training targets.

Deep MARL algorithms, including QMIX [Rashid et al., 2020], also grapple with the 

overestimation problem.

• Soft Mellowmax Operator:
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Multi-Agent

Env

Replay

Buffer

(𝑠1, 𝑎1, 𝑟1,
, … ,

𝑠𝑁 , 𝑎𝑁 , 𝑟𝑁)Interacting

Storing

Training

Issue 2: Unstationary data distribution

Transition-level buffer tricks [Banerjee et al., 2022; Tan et al., 

2023] are not feasible in MARL settings, as transitions are in 

episode form.

Single-Agent

Env

Replay

Buffer

(𝑠1, 𝑎1, 𝑟1, 𝑠1
′)

Interacting

Storing

Training

(𝑠2, 𝑎2, 𝑟2, 𝑠2
′ )

(𝑠3, 𝑎3, 𝑟3, 𝑠3
′ )

×N
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Issue 2: Unstationary data distribution

Improving the rationality of sample distribution.

A dual buffer mechanism 

utilizing two First-in-First-Out 

(FIFO) replay buffe
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MAST: Multi-Agent Sparse Training

. . .

(𝑜𝑡
1, 𝑢𝑡−1

1 ) (𝑜𝑡
𝑛, 𝑢𝑡−1

𝑛 )

Mixing Network

𝑄1(𝜏
1, 𝑢𝑡

1) 𝑄1(𝜏
𝑛, 𝑢𝑡

𝑛)

𝑄𝑡𝑜𝑡(𝝉, 𝒖𝒕)InteractionStoring

Environment

𝑠𝑡

TD(𝝀) with Soft Mellowmax

1 − 𝜆 

𝑛=1

∞

𝜆𝑛−1𝒯𝑡
𝑛
(𝑟, sm𝜔(𝑄))

Agent 1 Agent N

On-Policy

Buffer

Off-Policy

Buffer

Sampling

Dual buffers



13

• Up to 20x FLOPs reduction for both training and inference

• Less than 3% performance degradation 

Empirical Results
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Empirical Results

SMAC Benchmark 

[Samvelyan et al., 2019]  

Agent mask visualization
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Empirical Results

StarCraft II 

2s3z Map

Agent mask visualization

Zealots

Stalker
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Conclusion

Precise Value 

Estimation

Enhanced 

Training Stability

Hybrid TD(λ) Target

MAST

Soft Mellowmax Operator

Dual Buffers

Sparse Training for 

Deep MARL Models

3% Performance 

Loss

20x FLOPs 

reduction 

Experiment 

Results
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