

Value-Based Deep Multi-Agent Reinforcement Learning with Dynamic Sparse Training

Pihe Hu*¹, Shaolong Li*², Zhuoran Li¹, Ling Pan³, Longbo Huang₁

¹IIIS, Tsinghua University, ²CST, Central South University, ³ECE, HKUST

Deep MARL has been successful

StarCraft II [Mathieu et al., 2021] Dota 2 [Berner et al., 2019] Autonomous Robots [Chen et al., 2020]

Deep MARL is costly

Agent

Function Approximation

Deep Neural Network Parameters up to several Gigabytes

OpenAl Five [Berner et al., 2019] >1000 GPUs ~180 days

Dynamic sparse training

- Drop connections based on *magnitudes*
- Explore new connections based on *gradients* [Evci et al., 2020]

Comparison of different sparse training methods.

- SS: static sparse networks
- SET [Mocanu et al., 2018]
 - > Existing DST method 1
- **RigL** [Evci et al., 2020]
 - ➢ Existing DST method 2
- RLx2 [Tan et al., 2023]
 - Single-Agent DST method
- MAST: our proposed method $\frac{1}{5}$

Can we train deep MARL agents effectively using ultra-sparse networks throughout?

Issue 1: Inaccurate learning target (1)

TD target $\mathcal{T}Q_1$ $\mathcal{T}Q_2$ $\mathcal{T}Q_3$

lter 0	0.9	0.0	0.9	
lter 1	1.7	1.7	2.0	
lter 2	2.9	2.4	3.0	

Generated by **sparse** value networks.

The expected TD error:

Existence of a **best** step length.

Issue 1: Inaccurate learning target (1)

Improving the reliability of training targets.

Issue 1: Inaccurate learning target (2)

Deep MARL algorithms, including QMIX [Rashid et al., 2020], also grapple with the **overestimation** problem.

• Soft Mellowmax Operator:
$$\operatorname{sm}_{\omega}(Q_{i}(\tau, \cdot)) = \frac{1}{\omega} \log \left[\sum_{u \in \mathcal{U}} \frac{\exp\left(\alpha Q_{i}\left(\tau, u\right)\right)}{\sum_{u' \in \mathcal{U}} \exp\left(\alpha Q_{i}\left(\tau, u'\right)\right)} \exp\left(\omega Q_{i}\left(\tau, u\right)\right) \right]$$

Reducing overestimation of training targets.

Issue 2: Unstationary data distribution

Transition-level buffer tricks [Banerjee et al., 2022; Tan et al., 2023] are not feasible in MARL settings, as transitions are in episode form.

Issue 2: Unstationary data distribution

A **dual buffer mechanism** utilizing two First-in-First-Out (FIFO) replay buffe

Improving the rationality of sample distribution.

MAST: Multi-Agent Sparse Training

Empirical Results

Alg.	Env.	Sp.	Total Size	FLOPs (Train)	FLOPs (Test)	Tiny (%)	SS (%)	SET (%)	RigL (%)	RLx2 (%)	MAST (%)
Q- MIX	3m	95%	0.066 <mark>x</mark>	0.051x	0.050x	98.3	91.6	96.0	95.3	12.1	100.9
	2s3z	95%	0.062x	0.051x	0.050x	83.7	73.0	77.6	69.4	45.8	98.0
	3s5z	90%	0.109x	0.101x	0.100x	68.2	34.0	52.3	45.2	50.1	99.0
	64*	90%	0.106x	0.100x	0.100x	58.2	40.2	67.1	48.7	9.9	97.6
	Avg.	92%	0.086 <mark>x</mark>	0.076x	0.075x	77.1	59.7	73.2	64.6	29.8	98.9
WQ- MIX	3m	90%	0.108x	0.100x	0.100x	98.3	96.9	97.8	97.8	98.0	98.6
	2s3z	90%	0.106x	0.100x	0.100x	89.6	75.4	85.9	86.8	87.3	100.2
	3s5z	90%	0.105x	0.100x	0.100x	70.7	62.5	56.0	50.4	60.7	96.1
	64*	90%	0.104 x	0.100x	0.100x	51.0	29.6	44.1	41.0	52.8	98.4
	Avg.	90%	0.106x	0.100x	0.100x	77.4	66.1	70.9	69.0	74.7	98.1
RES	3m	95%	0.066x	0.055x	0.050x	97.8	95.6	97.3	91.1	97.9	99.8
	2s3z	90%	0.111x	0.104x	0.100x	96.5	92.8	92.8	94.7	94.0	98.4
	3s5z	85%	0.158x	0.154x	0.150x	95.1	89.0	90.3	92.8	86.2	99.4
	64*	85%	0.155x	0.151x	0.150x	83.3	39.1	44.1	35.3	72.7	104.9
	Avg.	89%	0.122x	0.116x	0.112x	93.2	79.1	81.1	78.5	87.7	100.6

- Up to 20x FLOPs reduction for both training and inference
- Less than 3% performance degradation

Empirical Results

Agent mask visualization

SMAC Benchmark [Samvelyan et al., 2019]

14

Empirical Results Zealots

StarCraft II 2s3z Map

Stalker

Agent mask visualization

Conclusion

References

[Banerjee et al., 2022] Chayan Banerjee, Zhiyong Chen, and Nasimul Noman. Improved soft actor-critic: Mixing prioritized off-policy samples with on-policy experiences. IEEE Transactions on Neural Networks and Learning Systems, 2022.

[Berner et al., 2019] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

[Chen et al., 2020] Yu-Jia Chen, Deng-Kai Chang, and Cheng Zhang. Autonomous tracking using a swarm of uavs: A constrained multi-agent reinforcement learning approach. IEEE Transactions on Vehicular Technology, 69(11):13702–13717, 2020b.

[Evci et al., 2020] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery: Making all tickets winners. In International Conference on Machine Learning, pages 2943–2952. PMLR, 2020.

[Mathieu et al., 2021] Michael Mathieu, Sherjil Ozair, Srivatsan Srinivasan, Caglar Gulcehre, Shangtong Zhang, Ray Jiang, Tom Le Paine, Konrad Zolna, Richard Powell, Julian Schrittwieser, et al. Starcraft ii unplugged: Large scale offline reinforcement learning. In Deep RL Workshop NeurIPS 2021, 2021.

[Mocanu et al., 2018] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu, and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science. Nature communications, 9(1):2383, 2018.

[Rashid et al., 2020] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster, and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement learning. The Journal of Machine Learning Research, 21(1):7234–7284, 2020. 17 [Samvelyan et al., 2019] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar,