

Enhancing Robustness in Deep Reinforcement Learning: A Lyapunov Exponent Approach Rory Young, Nicolas Pugeault

GOOD UNIVERSITY

GUIDE 2024

SCOTTISH UNIVERSITY OF THE YEAR

Reinforcement Learning

Reinforcement Learning

Produce a policy:

$$a_t = \pi_\theta(s_t)$$

which maximises the expected sum of discounted rewards:

$$\mathop{\mathbb{E}}\limits_{s_0\sim
ho_0}\left[\sum\limits_{t=0}^{\infty} \gamma^t imes r(s_t,a_t)
ight]$$

State Dynamics

Maximal Lyapunov Exponent (λ₁)

$$|s_t - \hat{s}_t| pprox |s_0 - \hat{s}_0| imes e^{\lambda_1 t}$$

$$\lambda_1 = \lim_{t o \infty} \; \lim_{\hat{s}_0 o s_0} \; rac{1}{t} \mathrm{ln} \left(rac{|s_t \; - \; \hat{s}_t|}{|s_0 \; - \; \hat{s}_0|}
ight)$$

λ_1	Dynamics		
-	Stable		
+	Chaotic		

It is impossible to accurately predict the long-term state dynamics given an approximate observation.

Reward stability

Reward stability

Adversarial methods can leverage this instability to significantly decrease performance with a single attack.

Maximal Lyapunov Exponent Regularisation

$$\mathcal{L}(\theta) \doteq \underbrace{-\sum_{t=1}^{T} \left(\text{sg}\left(\frac{R_t^{\lambda} - v_{\phi}(s_t)}{\max(1, S)}\right) \log \pi_{\theta}(a_t | s_t) + \eta \text{H}\left[\pi_{\theta}(a_t | s_t)\right] \right)}_{\text{Dreamer V3}} + \underbrace{\sum_{t=1}^{T} \left(\text{Var}(S_t) + \text{Var}(H_t) \right)}_{\text{MLE Regularisation}}$$

	Reward		MLE	
Environment	DR3	MLE DR3	DR3	MLE DR3
Pointmass	869.5	880.5	0.0326	-0.0275
Cartpole Balance	978.6	970.5	0.0249	0.0231
Cartpole Swingup	781.4	866.4	0.0149	0.0235
Walker Stand	973.0	961.6	0.1688	0.0654
Walker Walk	948.6	950.7	0.1614	0.1405
Walker Run	646.3	698.4	0.1345	0.1106
Cheetah Run	737.7	675.2	0.0337	0.0283

Results

1. Deep reinforcement learning policies can produce chaotic state and reward trajectories in continuous control tasks.

- 1. Deep reinforcement learning policies can produce chaotic state and reward trajectories in continuous control tasks.
- 2. Chaotic systems are highly sensitive to initial conditions, so it is impossible to accurately predict the long-term state dynamics given a noisy observation.

- 1. Deep reinforcement learning policies can produce chaotic state and reward trajectories in continuous control tasks.
- 2. Chaotic systems are highly sensitive to initial conditions, so it is impossible to accurately predict the long-term state dynamics given a noisy observation.
- 3. This instability can substantially decrease overall performance with a single state perturbation.

- 1. Deep reinforcement learning policies can produce chaotic state and reward trajectories in continuous control tasks.
- 2. Chaotic systems are highly sensitive to initial conditions, so it is impossible to accurately predict the long-term state dynamics given a noisy observation.
- 3. This instability can substantially decrease overall performance with a single state perturbation.
- 4. To improve the stability of the control interaction, we propose Maximal Lyapunov Exponent regularisation for Dreamer V3.

R.Young.4@research.gla.ac.uk