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LLM Processes
Numerical Predictive Distributions Conditioned on Natural Language



• Textual information is currently underutilized in probabilistic 
regression:
oDoctors notes, news articles, weather reports, csv headers… 

 

We’d Like to Incorporate Textual Information when Modelling

• Incorporating prior information is hard. 



LLM-Powered Probabilistic Prediction

LLM Processes allow you to make predictions:
1. By directly explaining, in plain language, the unique information 

that you have about a particular problem.
2. That harness the massive latent knowledge in SOTA LLMs.



Training points 
shown to the model

We developed a Regression Model That You Can Talk To.

User provides information to the model in plain language.
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Eliciting a Predictive Distribution from an LLM
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Eliciting a Predictive Distribution from an LLM
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LLMPs Have Flexible Data Handling 

Multidimensional data: weather prediction (1D in, 3D out) 

True 20% 
Observed

20% 
Reconstruct

50% 
Observed

50% 
Reconstruct

Image Reconstruction (2D in, 1D out)

Llama-3-7B LLMP

Mixtral 8×7B LLMP



Task: Predict US housing prices using various features given 10 example houses.

•Case 1: model is given features as 
only numerical values

•Case 2: model is given numerical features with 
text labels.

“30.45738, -97.75516, 78729, 
107830.0, 30907, 1216.1, 1349, 3"

“Location: Austin, Texas, Latitude: 30.45738, 
Longitude: -97.75516, Zip Code: 78729, Median 
Household Income: 107830.0, Zip Code Population: 
30907 people, Zip Code Density: 1216.1, people per 
square mile, Living Space: 1349 square feet, Number 
of Bedrooms: 3, Number of, Bathrooms: 2"

Same numerical information.

Incorporating Side Information from Text



Using Mixtral-8×7B Instruction Tuned

Without Text Labels

Incorporating Side Information from Text



Using Mixtral-8×7B Instruction Tuned

Without Text Labels

With Text Labels 

Incorporating Side Information from Text



Using Mixtral-8×7B Instruction Tuned

Without Text
Labels

With Text
Labels

Incorporating Side Information from Text
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Thank You!
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