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NeurIPSNoisy Label Learning Problem
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Figure: Source: internet/chatgpt.

Goal: Recover the ground truth (GT) classifier f ♮ given (x1, ŷ1), . . . , (xN , ŷN ).
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NeurIPSNoise Generation Modeling Approach

▶ Among approaches including noisy label filtering [1–4], robust noise design [5–9], the noise
generation modeling [10–18] approach is the most popular.

▶ Let x, y, ŷ be the sample’s feature, its true label, and the obtained noisy label, Pr (ŷ = 1 | x)
. . .

Pr (ŷ = K | x)


︸ ︷︷ ︸

g♮(x)

=

 Pr (ŷ = 1 | y = 1,x) . . . Pr (ŷ = 1 | y = K,x)
. . . . . . . . .

Pr (ŷ = K | y = 1,x) . . . Pr (ŷ = K | y = K,x)


︸ ︷︷ ︸

T ♮(x)

 Pr (y = 1 | x)
. . .

Pr (y = K | x)


︸ ︷︷ ︸

f♮(x)

g♮(x)︸ ︷︷ ︸
noisy label

probability vector

= T ♮(x)︸ ︷︷ ︸
confusion matrix

f ♮(x)︸ ︷︷ ︸
true label

probability vector
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NeurIPSInstance-Dependent Noise Model
Noise generation model:

g♮(x) = T ♮(x)f ♮(x).

▶ Learning under instance-dependent confusion matrices is an ill-posed problem.

▶ Most existing works [12, 14, 15, 17, 19, 20] resort to a simplification: T ♮(x) = A♮, ∀x .

▶ However, real data exhibits a more complex confusion matrix.

Figure: Nominal images (left) exhibits similar labeling difficulty, whereas special/outlier images (right) display a wide range of
labeling challenges.

▶ We consider an instance-dependent noise model

Nominal samples: T ♮(xn) = A♮ , if n ∈ O ⊆ [N ]

Outlier samples: T ♮(xn) = A♮(xn) for some A♮(·), otherwise.
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NeurIPSIdentifiability Guarantee
Proposed criterion:

minimize
{Am∈A},{e(m)

n ∈E},f∈F
Lce ≜ −

1

S

∑
(m,n)∈S

K∑
k=1

1[ŷ
(m)
n = k] log

[
Amf(xn) + e

(m)
n

]
k
, (1a)

subject to
N∑

n=1

1

{
M∑

m=1

∥e(m)
n ∥2 > 0

}
≤ C, (1b)

Theorem (Identifiability and Generalization)

Let ({Âm}, {ê(m)
n }, f̂) be any optimal solution of (1). The following result

holds with probability greater than 1− 2/S −K/Tα:

E
x∼Dx

[
min
Π

∥f̂(x)−Π⊤f♮(x)∥22
]
≤ K(η + ξ1 + ξ2),

min
Π

∥Âm −A♮
mΠ∥2F = Kσ2(η + ξ1 + ξ2), ∀m,

where η2 = O
(
βMTα

√
S
(√

M logS + (∥X∥RF )0.25
))

, Π a permutation

matrix, and T = N − |I| . In addition, we have exact outlier detection, i.e.,

Î = I.
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Figure: Performance of the proposal
on CIFAR-10 with synthetic labels

against different number of
annotators.
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∥Âm −A♮
mΠ∥2F = Kσ2(η + ξ1 + ξ2), ∀m,

where η2 = O
(
βMTα

√
S
(√

M logS + (∥X∥RF )0.25
))

, Π a permutation

matrix, and T = N − |I| . In addition, we have exact outlier detection, i.e.,
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NeurIPSExperiments using Real Datasets
Data.
▶ CIFAR10-N [21]. N = 60000,K = 10,M = 3 . The error rates of annotators are 17.23%,

18.12%, and 17.64%.
▶ LabelMe [22, 23]. N = 2688,K = 8,M = 59. The average error rate is 25.95%.
▶ ImageNet-15N: we acquire noisy annotations by asking AMT workers to annotate some images

from ImageNet. K = 15, N = 2, 514, M = 100. The average error rate of the annotators is
42.68%.

Table: Average classification accuracy on CIFAR-10N, LabelMe, and ImageNet-15N datasets, labeled by human annotators.
Bold black represents the best and blue represents the second best.

Method/Dataset CIFAR-10N LabelMe ImageNet-15N

PTD 89.52 ± 0.24 84.18 ± 1.36 65.53 ± 0.18
BLTM 75.68 ± 0.47 82.10 ± 0.56 66.57 ± 0.76

VolMinNet 86.58 ± 0.21 79.97 ± 0.16 63.11 ± 1.08
Reweight 89.56 ± 0.30 84.51 ± 0.50 65.85 ± 2.93

GCE 78.01 ± 7.23 83.41 ± 0.59 64.71 ± 1.38
MEIDTM 68.69 ± 0.31 83.53 ± 0.21 72.66 ± 0.58

CrowdLayer 87.38 ± 0.43 82.80 ± 0.90 61.36 ± 2.73
TraceReg 86.57 ± 0.24 82.83 ± 0.23 68.43 ± 0.12
MaxMIG 90.11 ± 0.09 83.73 ± 0.84 81.13 ± 1.42

GeoCrowdNet(F) 87.19 ± 0.37 87.21 ± 0.39 80.45 ± 1.77
GeoCrowdNet(W) 86.43 ± 0.44 82.83 ± 0.75 68.79 ± 0.27
COINNet (Ours) 92.09 ± 0.47 87.60 ± 0.54 93.71 ± 3.26
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NeurIPSQualitative Results

Figure: Examples from CIFAR-10N with low (left) and high (right) sn =
∑M

m=1 ∥ê(m)
n ∥2.

sn = 0.24
true label: penguin

sn = 0.26
true label: container ship

sn = 0.36
true label: airliner

sn = 0.35
true label: container ship

sn = 0.33
true label: dog

sn = 0.34
true label: tiger cat

sn = 1.55
true label: freight car

sn = 1.77
true label: trailer truck

sn = 1.71
true label: soccer ball

sn = 1.59
true label: penguin

sn = 1.57
true label: orange

sn = 1.81
true label: lemon

Figure: Examples from ImageNet-15N with low (top) and high (bottom) sn =
∑M

m=1 ∥ê(m)
n ∥2.
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