

Noisy Label Learning with Instance-Dependent Outliers: Identifiability via Crowd Wisdom

Tri Nguyen¹ Shahana Ibrahim² Xiao Fu¹

¹School of EECS Oregon State University

²Department of ECE University of Central Florida

NeurIPS 2024

Noisy Label Learning Problem

(a) Clean label

Figure: Source: internet/chatgpt.

NeurIPS

Noisy Label Learning Problem

Figure: Source: internet/chatgpt.

Goal: Recover the ground truth (GT) classifier f^{\natural} given $(x_1, \hat{y}_1), \ldots, (x_N, \hat{y}_N)$.

Noise Generation Modeling Approach

NeurIPS

Among approaches including noisy label filtering [1–4], robust noise design [5–9], the noise generation modeling [10–18] approach is the most popular.

Noise Generation Modeling Approach

- Among approaches including noisy label filtering [1–4], robust noise design [5–9], the noise generation modeling [10–18] approach is the most popular.
- Let x, y, \hat{y} be the sample's feature, its true label, and the obtained noisy label,

$$\underbrace{\begin{bmatrix} \Pr\left(\widehat{y}=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(\widehat{y}=K \mid \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{g}^{\natural}(\boldsymbol{x})} = \underbrace{\begin{bmatrix} \Pr\left(\widehat{y}=1 \mid y=1, \boldsymbol{x}\right) & \cdots & \Pr\left(\widehat{y}=1 \mid y=K, \boldsymbol{x}\right) \\ \cdots & \cdots & \cdots \\ \Pr\left(\widehat{y}=K \mid y=1, \boldsymbol{x}\right) & \cdots & \Pr\left(\widehat{y}=K \mid y=K, \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{T}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{f}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{f}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{f}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{f}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{f}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{f}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{f}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{f}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{f}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{f}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{f}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{f}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{f}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{f}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{f}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{f}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{f}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{f}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{f}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{f}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{f}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \end{gathered}}_{\boldsymbol{f}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \end{gathered}}_{\boldsymbol{f}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) } \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) } \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol$$

Noise Generation Modeling Approach

- Among approaches including noisy label filtering [1–4], robust noise design [5–9], the noise generation modeling [10–18] approach is the most popular.
- Let x, y, \hat{y} be the sample's feature, its true label, and the obtained noisy label,

noisy label

probability vector

$$\underbrace{\begin{bmatrix} \Pr\left(\widehat{y}=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(\widehat{y}=K \mid \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{g}^{\natural}(\boldsymbol{x})} = \underbrace{\begin{bmatrix} \Pr\left(\widehat{y}=1 \mid y=1, \boldsymbol{x}\right) & \cdots & \Pr\left(\widehat{y}=1 \mid y=K, \boldsymbol{x}\right) \\ \cdots & \cdots & \cdots \\ \Pr\left(\widehat{y}=K \mid \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{T}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(\widehat{y}=K \mid y=1, \boldsymbol{x}\right) & \cdots & \Pr\left(\widehat{y}=K \mid y=K, \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{T}^{\natural}(\boldsymbol{x})} \underbrace{\begin{bmatrix} \Pr\left(y=1 \mid \boldsymbol{x}\right) \\ \cdots \\ \Pr\left(y=K \mid \boldsymbol{x}\right) \end{bmatrix}}_{\boldsymbol{f}^{\natural}(\boldsymbol{x})}$$

confusion matrix

true label

probability vector

Noise generation model:

$$oldsymbol{g}^{lat}(oldsymbol{x}) = oldsymbol{T}^{lat}(oldsymbol{x})oldsymbol{f}^{lat}(oldsymbol{x}).$$

► Learning under instance-dependent confusion matrices is an ill-posed problem.

Noise generation model:

$$oldsymbol{g}^{lat}(oldsymbol{x}) = oldsymbol{T}^{lat}(oldsymbol{x})oldsymbol{f}^{lat}(oldsymbol{x}).$$

Learning under instance-dependent confusion matrices is an ill-posed problem.

 \blacktriangleright Most existing works [12, 14, 15, 17, 19, 20] resort to a simplification: $T^{rak l}(x)=A^{rak l}, \ orall x$.

Noise generation model:

$$oldsymbol{g}^{lat}(oldsymbol{x}) = oldsymbol{T}^{lat}(oldsymbol{x})oldsymbol{f}^{lat}(oldsymbol{x}).$$

- Learning under instance-dependent confusion matrices is an ill-posed problem.
- \blacktriangleright Most existing works [12, 14, 15, 17, 19, 20] resort to a simplification: $T^{rak g}(x)=A^{rak g}, \ orall x$.
- However, real data exhibits a more complex confusion matrix.

Figure: Nominal images (left) exhibits similar labeling difficulty, whereas special/outlier images (right) display a wide range of labeling challenges.

Noise generation model:

$$oldsymbol{g}^{lat}(oldsymbol{x}) = oldsymbol{T}^{lat}(oldsymbol{x})oldsymbol{f}^{lat}(oldsymbol{x}).$$

- Learning under instance-dependent confusion matrices is an ill-posed problem.
- \blacktriangleright Most existing works [12, 14, 15, 17, 19, 20] resort to a simplification: $T^{
 atural}(x)=A^{
 atural}, \ orall x$.
- However, real data exhibits a more complex confusion matrix.

Figure: Nominal images (left) exhibits similar labeling difficulty, whereas special/outlier images (right) display a wide range of labeling challenges.

We consider an instance-dependent noise model

 $\begin{array}{ll} \text{Nominal samples:} \quad {\boldsymbol{T}}^{\natural}({\boldsymbol{x}}_n) = {\boldsymbol{A}}^{\natural} \quad \text{, if } n \in \mathcal{O} \subseteq [N] \\ \text{Outlier samples:} \quad {\boldsymbol{T}}^{\natural}({\boldsymbol{x}}_n) = {\boldsymbol{A}}^{\natural}({\boldsymbol{x}}_n) \quad \text{for some } {\boldsymbol{A}}^{\natural}(\cdot), \quad \text{otherwise.} \end{array}$

Identifiability Guarantee Proposed criterion:

$$\begin{array}{l} \underset{\{\boldsymbol{A}_{m}\in\mathcal{A}\},\{\boldsymbol{e}_{n}^{(m)}\in\mathcal{E}\},\boldsymbol{f}\in\mathcal{F}}{\text{minimize}} \quad \mathsf{L}_{\mathsf{ce}} \triangleq -\frac{1}{S} \sum_{(m,n)\in\mathcal{S}} \sum_{k=1}^{K} \mathbb{1}[\widehat{\boldsymbol{y}}_{n}^{(m)} = k] \log \left[\boldsymbol{A}_{m}\boldsymbol{f}(\boldsymbol{x}_{n}) + \boldsymbol{e}_{n}^{(m)}\right]_{k}, \quad (1a) \\ \text{subject to} \quad \sum_{n=1}^{N} \mathbb{1}\left\{\sum_{m=1}^{M} \|\boldsymbol{e}_{n}^{(m)}\|_{2} > 0\right\} \leq C, \quad (1b)
\end{array}$$

Identifiability Guarantee

Proposed criterion:

$$\begin{array}{l} \underset{\{\boldsymbol{A}_{m}\in\mathcal{A}\},\{\boldsymbol{e}_{n}^{(m)}\in\mathcal{E}\},\boldsymbol{f}\in\mathcal{F}}{\text{minimize}} \quad \mathsf{L}_{\mathsf{ce}} \triangleq -\frac{1}{S} \sum_{(m,n)\in\mathcal{S}} \sum_{k=1}^{K} \mathbb{1}[\widehat{\boldsymbol{y}}_{n}^{(m)} = k] \log \left[\boldsymbol{A}_{m}\boldsymbol{f}(\boldsymbol{x}_{n}) + \boldsymbol{e}_{n}^{(m)}\right]_{k}, \quad (1a) \\ \text{subject to} \quad \sum_{n=1}^{N} \mathbb{1}\left\{\sum_{m=1}^{M} \|\boldsymbol{e}_{n}^{(m)}\|_{2} > 0\right\} \leq C, \quad (1b)
\end{array}$$

Theorem (Identifiability and Generalization)

Let $(\{\widehat{A}_m\}, \{\widehat{e}_n^{(m)}\}, \widehat{f})$ be any optimal solution of (1). The following result holds with probability greater than $1 - 2/S - K/T^{\alpha}$:

$$\mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}_{\boldsymbol{x}}}\left[\min_{\boldsymbol{\Pi}}\|\widehat{\boldsymbol{f}}(\boldsymbol{x})-\boldsymbol{\Pi}^{\top}\boldsymbol{f}^{\natural}(\boldsymbol{x})\|_{2}^{2}\right] \leq K(\eta+\xi_{1}+\xi_{2}),$$
$$\min_{\boldsymbol{\Pi}}\|\widehat{\boldsymbol{A}}_{m}-\boldsymbol{A}_{m}^{\natural}\boldsymbol{\Pi}\|_{\mathrm{F}}^{2}=K\sigma^{2}(\eta+\xi_{1}+\xi_{2}), \ \forall m,$$

where $\eta^2 = \mathcal{O}\left(\beta M T^{\alpha} \sqrt{S} \left(\sqrt{M \log S} + (\|\mathbf{X}\| R_{\mathcal{F}})^{0.25}\right)\right)$, Π a permutation matrix, and $T = N - |\mathcal{I}|$. In addition, we have exact outlier detection, i.e., $\hat{\mathcal{I}} = \mathcal{I}$.

Identifiability Guarantee

Proposed criterion:

$$\begin{array}{l} \underset{\{\boldsymbol{A}_{m}\in\mathcal{A}\},\{\boldsymbol{e}_{n}^{(m)}\in\mathcal{E}\},\boldsymbol{f}\in\mathcal{F}}{\text{minimize}} \quad \mathsf{L}_{\mathsf{ce}} \triangleq -\frac{1}{S} \sum_{(m,n)\in\mathcal{S}} \sum_{k=1}^{K} \mathbb{1}[\widehat{\boldsymbol{y}}_{n}^{(m)} = k] \log \left[\boldsymbol{A}_{m}\boldsymbol{f}(\boldsymbol{x}_{n}) + \boldsymbol{e}_{n}^{(m)}\right]_{k}, \quad (1a) \\ \text{subject to} \quad \sum_{n=1}^{N} \mathbb{1}\left\{\sum_{m=1}^{M} \|\boldsymbol{e}_{n}^{(m)}\|_{2} > 0\right\} \leq C, \quad (1b)
\end{array}$$

Theorem (Identifiability and Generalization)

Let $(\{\widehat{A}_m\}, \{\widehat{e}_n^{(m)}\}, \widehat{f})$ be any optimal solution of (1). The following result holds with probability greater than $1 - 2/S - K/T^{\alpha}$:

$$\mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}_{\boldsymbol{x}}}\left[\min_{\boldsymbol{\Pi}}\|\widehat{\boldsymbol{f}}(\boldsymbol{x})-\boldsymbol{\Pi}^{\top}\boldsymbol{f}^{\natural}(\boldsymbol{x})\|_{2}^{2}\right] \leq K(\eta+\xi_{1}+\xi_{2}),$$
$$\min_{\boldsymbol{\Pi}}\|\widehat{\boldsymbol{A}}_{m}-\boldsymbol{A}_{m}^{\natural}\boldsymbol{\Pi}\|_{\mathrm{F}}^{2}=K\sigma^{2}(\eta+\xi_{1}+\xi_{2}), \ \forall m,$$

where $\eta^2 = \mathcal{O}\left(\beta M T^{\alpha} \sqrt{S} \left(\sqrt{M \log S} + (\|\mathbf{X}\| R_{\mathcal{F}})^{0.25}\right)\right)$, Π a permutation matrix, and $T = N - |\mathcal{I}|$. In addition, we have exact outlier detection, i.e., $\hat{\mathcal{I}} = \mathcal{I}$.

Figure: Performance of the proposal on CIFAR-10 with synthetic labels against different number of annotators.

Experiments using Real Datasets

Data.

- ▶ CIFAR10-N [21]. N = 60000, K = 10, M = 3. The error rates of annotators are 17.23%, 18.12%, and 17.64%.
- ▶ LabelMe [22, 23]. N = 2688, K = 8, M = 59. The average error rate is 25.95%.
- ▶ ImageNet-15N: we acquire noisy annotations by asking AMT workers to annotate some images from ImageNet. K = 15, N = 2,514, M = 100. The average error rate of the annotators is 42.68%.

Table: Average classification accuracy on CIFAR-10N, LabelMe, and ImageNet-15N datasets, labeled by human annotators. Bold black represents the best and blue represents the second best.

Method/Dataset	CIFAR-10N	LabelMe	ImageNet-15N
PTD	89.52 ± 0.24	84.18 ± 1.36	65.53 ± 0.18
BLTM	75.68 ± 0.47	82.10 ± 0.56	66.57 ± 0.76
VolMinNet	86.58 ± 0.21	79.97 ± 0.16	63.11 ± 1.08
Reweight	89.56 ± 0.30	84.51 ± 0.50	65.85 ± 2.93
GCE	78.01 ± 7.23	83.41 ± 0.59	64.71 ± 1.38
MEIDTM	68.69 ± 0.31	83.53 ± 0.21	72.66 ± 0.58
CrowdLayer	87.38 ± 0.43	82.80 ± 0.90	61.36 ± 2.73
TraceReg	86.57 ± 0.24	82.83 ± 0.23	68.43 ± 0.12
MaxMIG	90.11 ± 0.09	83.73 ± 0.84	81.13 ± 1.42
GeoCrowdNet(F)	87.19 ± 0.37	87.21 ± 0.39	80.45 ± 1.77
GeoCrowdNet(W)	86.43 ± 0.44	82.83 ± 0.75	68.79 ± 0.27
COINNet (Ours)	$\textbf{92.09} \pm \textbf{0.47}$	$\textbf{87.60} \pm \textbf{0.54}$	93.71 ± 3.26

Qualitative Results

Figure: Examples from CIFAR-10N with low (left) and high (right) $s_n = \sum_{m=1}^M \|\widehat{e}_n^{(m)}\|^2$.

Qualitative Results

Figure: Examples from CIFAR-10N with low (left) and high (right) $s_n = \sum_{m=1}^M \|\widehat{e}_n^{(m)}\|^2$.

Figure: Examples from ImageNet-15N with low (top) and high (bottom) $s_n = \sum_{m=1}^M \|\widehat{e}_n^{(m)}\|^2$.