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Abstract
• The role of contrastive learning (CL) in molecular representation learning

- Contrastive Learning (CL) enables unsupervised learning from large-scale, 
unlabeled molecular datasets.

• The problem of false positive and false negative pairs in molecular datasets

- Existing methods often introduce false positive and false negative pairs due to 
conventional augmentations, limiting their effectiveness. 

• Our proposed framework and its achievements

- We propose a probability-based contrastive learning framework, optimized 
through a stochastic expectation-maximization process, achieving state-of-the-art 
results in multiple benchmarks.
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Contrastive molecular learning
• Molecular contrastive learning 

Molecules are represented as 2D 
or 3D molecule graphs. 

• Two stochastic augmentation 
strategies are applied to each 
graph, resulting in two aug 
mentations. 

• A feature extractor is used to 
extract features and contrastive 
loss is used to maximize the 
similarity of positive pairs and 
minimize the similarity of negative 
pairs 3



Motivation
• Contrastive Learning is essential for 

unsupervised learning from large-scale 
unlabeled molecular datasets.

• Existing methods often generate false positive 

and false negative pairs due to conventional 
graph augmentations, such as node masking 
and subgraph removal. These issues can 
reduce the effectiveness of CL on molecular 
datasets.

• Our approach introduces a probability-based 

method that assigns dynamic weights to pairs 
to reduce this issue.
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Probability contrastive framework
• Our framework uses a Bayesian inference model to dynamically adjust weights for molecular pairs.

-Original contrastive loss

-Ours weighted loss   

• We incorporate Gamma and Bernoulli distributions to represent pair weights, reducing mislabeling 
effects.

-

• With this formulation, we can define the following distribution:

-
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Method continued

•  

• With this distribution, posterior inference of the weights is challenging, due to the lack of 
convenience posterior distributions

• We can introduce an augmented variable u to associate with data points x, then we can 
define an augmented distribution:

-

• Then we can do inference based on this distribution



Efficient Inference and Learning with Stocastic EM
We alternatively infer the local random variables w and optimize the global model parameter θ

The basic idea is to alternatively 

1) optimizing model parameter θ with fixed (u,w) and 

2) sampling (u,w) with f ixed θ. 

We follow standard procedures in stochastic EM to divide the learning into three steps: Simulation, 
Stochastic Expectation, and Maximization. 

Simulation: based the posterior distribution and the current batch of data, we infer the u and w:



Stochastic Expectation and Maximization
We use the sampled auxiliary random variables to update the model parameter θ by 
maximizing a stochastic objective Q(θ), defined as: 

Here, t is iteration step, and  {λt} is a sequence of decreasing weights

by decomposing the recursion, we have:

At each time t, we can initialize the parameter θ from the last step, and update it by 
stochastic gradient ascent on the log-likelihood, log p(θ,uτ,wτ | Dτ) calculated from the 
current batch of data. 

To reduce variance, we propose to optimize a marginal version by integrating out uτ from 
p(θ,uτ,wτ | Dτ), which essentially reduces to our original weighted contrastive loss.



Experimant results


