

Decomposed Prompt Decision Transformer for Efficient Unseen Task Generalization

Hongling Zheng¹, Li Shen^{2†}, Yong Luo^{1†}, Tongliang Liu³, Jialie Shen⁴, Dacheng Tao⁵

¹Wuhan University ²Shenzhen Campus of Sun Yat-sen University ³The University of Sydney ⁴City, University of London ⁵Nanyang Technological University

Decision Transformer Prompt-based Decision Transformer

Sequenced-based offline RL algorithms abandon the traditional dynamic programming approach in offline RL and adopt an autoregressive paradigm.

- \triangleright Decision Transformer models trajectories using tuples of returns, states, and actions collected at different time steps. Here, returns denote the cumulative reward from the current time step until the end of the episode.
- \triangleright Prompt-DT formalizes offline RL as a few-shot policy generalization problem. It is trained on a set of tasks with prompts and offline data, enabling it to generalize to new tasks.

Reinforcement Learning with Online Interactions

Offline Reinforcement Learning

 \Box Traditional offline RL algorithms rely heavily on historical trajectory data, and models may overestimate values for unseen actions or states, resulting in suboptimal policies.

 \Box While sequence-based offline RL methods like fine-tuning work well in specific scenarios, they often require task-specific data, limiting their applicability, especially when target task data is unavailable.

 \Box How can we better explore relationships between tasks to extract cross-task prompts and generalize to new downstream tasks?

Contribution

- We designed DPDT (Decomposed Prompt Decision Transformer) for knowledge extraction and zero-shot generalization.
- By leveraging a pre-trained language model, DPDT decomposes multi-task prompts into cross-task and taskspecific prompts through distillation.
- During testing, DPDT uses test-time adaptation (TTA) to optimize prompts by aligning them with hidden layer features of unlabeled test and training data.

• **Initialization:**

DPDT is initialized using the pre-trained language model GPT2-small.

• **Prompt Decomposition:**

Given a set of training tasks $S = (S_1, S_2, ..., S_n)$, the cross-task prompt P_c is designed to capture shared knowledge from S , while the taskspecific prompt P_k allows each task to retain its unique knowledge. To reduce computational complexity in the implementation, P_k is further decomposed into two low-rank vectors $v_k \in l * r$, $u_k \in r * s$.

$$
P_k^* = P_c \circ P_k = P_c \circ (v_k \otimes u_k)
$$

$$
\mathcal{L}_{MSE} = (a - \mathcal{M}(P_k^*, \tau))^2
$$

Decomposed Prompt Tuning $\left(\boldsymbol{a}\right)_{t-K+1}$ \cdots $\left(a\right)$ **Linear Layer Pre-trained GPT Blocks** $12 \times$ **Embedding Layer** task prompt P_k^* $\left(a \right)_{t-K+1} \left(\hat{\bm{r}} \right)$ (\hat{r}) (a) $\left(s\right)$ (s) Distillation \blacklozenge task specific prompt $\boldsymbol{P}_{\boldsymbol{k}}$ teacher prompt $P_k^{teacher}$ cross-task prompt P_c

• **Prompt Distillation:**

Due to the lack of explicit constraints in the specific implementation process, directly implementing prompt decomposition on the multitask dataset S may lead to an overlap in the information learned by P_c and P_k , potentially undermining their ability to capture distinct intended details.

$$
\mathcal{L}_{dis} = \sum_{k \in |\mathcal{S}|} |p_k^{teacher} - p_k^{\star}|^2
$$

$$
\mathcal{L}_{Total} = \mathcal{L}_{MSE} + \lambda \mathcal{L}_{dis}
$$

Input: Training task set S, Offline datasets $\mathcal{D}_{\mathcal{M}}$, Batch size M, Learning rate α , training iterations N, teacher task prompts $p_k^{teacher}$. **Initialize:** Initialize a 12-layer, 12-head DPDT \mathcal{M} using GPT2-SMALL, randomly initialize cross-task prompts P_c and low-rank vectors v_k , u_k . for $t = 1$ to N do for k in S do Select a trajectory τ that contains M samples in task k. Calculate P_k^* by Equation 3.

> Calculate L_{MSE} and L_{dis} according to Equations 4 and 5. Computed loss function by Equation 6.

$$
\theta \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}_{Total}.
$$

Algorithm 1 Decomposed Prompt Tuning

end for

end for

• **Calculating the aligned token mean and variance**

$$
\mu_l(\mathcal{T}) = \frac{1}{|X|} \sum_{i=1}^{|X|} H_{l,i}, \quad \sigma_l^2(\mathcal{T}) = \frac{1}{|X|} \sum_{i=1}^{|X|} \left[H_{l,i} - \mu_l(\mathcal{T}) \right]^2
$$

• **Calculating the alignment loss function**

$$
L_{\text{align}} = \frac{1}{L} \sum_{l=1}^{L} \left(\|\mu_l(\mathcal{T}) - \mu_l(\mathcal{D})\|_1 + \|\sigma_l^2(\mathcal{T}) - \sigma_l^2(\mathcal{D})\|_1 \right)
$$

Algorithm 2 Test Time Adaptation

Input: Test samples set X, Cross-task prompts P_c , $\mu_l(\mathcal{D})$, $\sigma_l^2(\mathcal{D})$, The number of layers L. 1: for $l = 1$ to L do for i in X do $2:$ $3:$ Calculate $H_{l,i}$ obtained by inputting the concatenation of P_c and i into DPDT. end for $4:$ 5: end for 6: for $l = 1$ to L do Compute $\mu_l(\mathcal{T})$ and $\sigma_l^2(\mathcal{T})$ by Equation 7. 7: 8: end for 9: Compute token distribution alignment loss by Equation 8.

10: Optimize L_{align} to update P_c .

Test Time Adaptation

• **Table 2: Results for Meta-RL control tasks (few-shot scenarios).**

• **Figure 2: Episodic accumulated returns.**

 UNI

• **Table 3: Ablation: The impact of prompt decomposition, prompt distillation and test time adaptation.**

• **Table 4: Ablation: The impact of model size.**

• **Table 5: Ablation: The impact of data quality.**

• **Table 6: Ablation: The impact of learning rate in prompt decomposition.**

• **Figure 3: Ablation: The effect of prompt length on DPDT's zero-shot generalization ability.**

Thanks!

hlzheng@whu.edu.cn