Unified Guidance for Geometry-Conditioned Molecular Generation

Sirine Ayadi^{*1,2} Leon Hetzel^{*1,2,3}

Fabian Theis^{1,2,3}

Reference

Unconditional Samples

Johanna Sommer^{*1,2}

Stephan Günnemann^{1,2}

Guided Samples

https://www.cs.cit.tum.de/daml/uniguide/

Diffusion models for drug design Equivariant (unconditional) diffusion model for 3D molecule generation

- coordinates: \mathbf{X}
- atom types: h
- configuration: **Z**

Hoogeboom, E., Satorras, V. G., Vignac, C., & Welling, M. (2022, June). Equivariant diffusion for molecule generation in 3D.

Unified Guidance for Geometry-Conditioned Molecule Generation

Diffusion models for drug design

Extending unconditional diffusion models for molecules to various conditioning tasks

Unified Guidance for Geometry-Conditioned Molecule Generation

Controlling diffusion models

Conditional Diffusion Models

- **X** Require conditional training per task
- **X** Require task-specific data
- **X** Extra training might be required to find a suitable condition representation

Work

revious

Previous diffusion-based methods are limited to a single drug design task

Guiding Diffusion Models

- Does not require extra training
- X Requires external model for guidance
- X External model has to be trained on noisy states of the diffusion process

Self-guiding diffusion models

ТΠ

Incorporating the condition c to the unconditional model $\epsilon_{\theta}(\mathbf{z}_t, t)$ during inference

$$= \frac{p_{\theta}(\mathbf{z}_t) p_{\theta}(\boldsymbol{c} \,|\, \mathbf{z}_t)}{p(\boldsymbol{c})}$$

$$\underbrace{\sup p_{\theta}(\mathbf{z}_{t})}_{\substack{\boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{t},t)\\\sqrt{1-\bar{\alpha}_{t}}}} + S \nabla_{\mathbf{z}_{t}} \log p_{\theta}(\boldsymbol{c} \,|\, \mathbf{z}_{t})$$

$$(t,t) - \sqrt{1 - \bar{\alpha}_t} S \nabla_{\mathbf{z}_t} \log p_{\theta}(\mathbf{c} | \mathbf{z}_t)$$

Self-guiding diffusion models

Incorporating the condition c to the unconditional model $\epsilon_{\theta}(\mathbf{z}_t, t)$ during inference

Assumption

 $p_{\theta}(\boldsymbol{c} \mid \mathbf{z})$

Use clean data point approximation

$$f_{\theta}(\mathbf{z}_t, t)$$
 =

Guiding

signal reduces to squared error

$$\nabla_{\mathbf{z}_{t}} \log p_{\theta}(\mathbf{c} \mid \mathbf{z}_{t}) = -\frac{1}{2} \nabla_{\mathbf{z}_{t}} | \mathbf{f} \text{ The condition must lie in the configuration space}$$

$$| \mathbf{c} \mid \mathbf{z}_{t} \mid \mathbf{z}_{t} \mid \mathbf{z}_{t} | \mathbf{z}_{t} | \mathbf{z}_{t} \mid \mathbf{z}_{t} | \mathbf{z}_{t$$

Self-guid $\epsilon_{\theta}(\mathbf{z}_t, t, c) = \epsilon_{\theta}(\mathbf{z}_t, t) + \lambda_t S \nabla_{\mathbf{z}_t} ||\mathbf{z}_0 - c||_2$

$$\mathbf{z}_t) = \mathcal{N}(\mathbf{c} | \mathbf{f}_{\theta}(\mathbf{z}_t, t), \mathbf{I})$$

$$\frac{\mathbf{z}_t - \sqrt{1 - \bar{\alpha}_t} \,\boldsymbol{\epsilon}_{\theta}(\mathbf{z}_t, t)}{\sqrt{\bar{\alpha}_t}} \eqqcolon \hat{\mathbf{z}}_0$$

Unified Guidance for Geometry-Conditioned Molecule Generation

UniGuide: A unified guidance framework

The condition map transforms arbitrary source conditions to suitable guidance targets

Unified Guidance for Geometry-Conditioned Molecule Generation

UniGuide: A unified guidance framework

Surface Condition Map (LBDD)

Sample points y from the surface

$$C_{\partial V} : \mathbb{R}^{K \times 3} \times \mathbb{R}^{N \times 3} \to \mathbb{R}^{N \times 3}$$
$$\mathbf{y} \times \hat{\mathbf{x}}_{0} \qquad \mapsto \mathbf{c}_{\mathbf{x}} \quad ,$$

Compute projection on surface from closest neighbours

$$ar{oldsymbol{y}}_i = rac{1}{k}\sum_{j\in\mathcal{N}_{oldsymbol{\hat{x}}_i}}R_{oldsymbol{\hat{x}}_0}oldsymbol{y}_j$$
 ,

with $\mathcal{N}_{\hat{\boldsymbol{x}}_i} = rg \min_{I \subset \{1, \dots, K\}, |I| = k} \sum_{j \in I} \left\| R_{\hat{\boldsymbol{x}}_0} \boldsymbol{y}_j - \hat{\boldsymbol{x}}_i \right\|_2$

Compute the (point-wise) target condition

$$\boldsymbol{c}_{\mathbf{x},i} = \begin{cases} \bar{\boldsymbol{y}}_i + \frac{\alpha}{d}(\bar{\boldsymbol{y}}_i - \hat{\boldsymbol{x}}_i) , & \text{if } \hat{\boldsymbol{x}}_i \text{ outside } V \\ \bar{\boldsymbol{y}}_i - \frac{\alpha}{d}(\bar{\boldsymbol{y}}_i - \hat{\boldsymbol{x}}_i) , & \text{if } \hat{\boldsymbol{x}}_i \text{ inside } V \wedge d < \alpha \\ \hat{\boldsymbol{x}}_i , & \text{otherwise }, \end{cases}$$

Unified Guidance for Geometry-Conditioned Molecule Generation

The condition map transforms arbitrary source conditions to suitable guidance targets

Figure: Surface Condition Map $C_{\partial V}$: For every atom x_i , the closest surface points y_j are computed.

UniGuide: A unified guidance framework

The condition map transforms arbitrary source conditions to suitable guidance targets

Surface Condition Map (LBDD)

Sample points y from the surface

$$C_{\partial V} : \mathbb{R}^{K \times 3} \times \mathbb{R}^{N \times 3} \to \mathbb{R}^{N \times 3}$$
$$\mathbf{y} \times \hat{\mathbf{x}}_{0} \qquad \mapsto \mathbf{c}_{\mathbf{x}} \quad ,$$

Compute projection on surface from closest neighbours

$$ar{oldsymbol{y}}_i = rac{1}{k}\sum_{j\in\mathcal{N}_{oldsymbol{\hat{x}}_i}}R_{oldsymbol{\hat{x}}_0}oldsymbol{y}_j$$
 ,

with $\mathcal{N}_{\hat{\boldsymbol{x}}_i} = rg \min_{I \subset \{1, \dots, K\}, |I| = k} \sum_{j \in I} \left\| R_{\hat{\boldsymbol{x}}_0} \boldsymbol{y}_j - \hat{\boldsymbol{x}}_i \right\|_2$

Compute the (point-wise) target condition

$$\boldsymbol{c}_{\mathbf{x},i} = \begin{cases} \bar{\boldsymbol{y}}_i + \frac{\alpha}{d}(\bar{\boldsymbol{y}}_i - \hat{\boldsymbol{x}}_i) , & \text{if } \hat{\boldsymbol{x}}_i \text{ outside } V \\ \bar{\boldsymbol{y}}_i - \frac{\alpha}{d}(\bar{\boldsymbol{y}}_i - \hat{\boldsymbol{x}}_i) , & \text{if } \hat{\boldsymbol{x}}_i \text{ inside } V \wedge d < \alpha \\ \hat{\boldsymbol{x}}_i , & \text{otherwise }, \end{cases}$$

Unified Guidance for Geometry-Conditioned Molecule Generation

$$\begin{split} \textbf{Special Case S} &= \boldsymbol{\mathcal{Z}} \\ \text{Ensure equivariant update} \\ C_{\mathcal{Z}} \colon \mathbb{R}^{m \times (3+d)} \times \mathbb{R}^{m \times (3+d)} \to \mathbb{R}^{m \times (3+d)} \\ \tilde{\mathbf{z}} \times \hat{\mathbf{z}}_{0}^{\mathcal{A}} \to T_{\hat{\mathbf{z}}_{0}^{\mathcal{A}}} \tilde{\mathbf{z}} \\ \end{split}$$
$$\begin{aligned} \textbf{SBDD} \\ C_{\mathcal{Z}}(\tilde{\mathbf{z}}^{\mathcal{P}}, \hat{\mathbf{z}}_{t}^{\mathcal{P}}) &= T_{\hat{\mathbf{z}}_{t}^{\mathcal{P}}} \tilde{\mathbf{z}}^{\mathcal{P}} \\ \end{aligned}$$
$$\begin{aligned} \textbf{FBDD} \\ C_{\mathcal{Z}}(\tilde{\mathbf{z}}^{\mathcal{A}}, \hat{\mathbf{z}}_{t}^{\mathcal{A}}) &= T_{\hat{\mathbf{z}}_{t}^{\mathcal{A}}} \tilde{\mathbf{z}}^{\mathcal{A}} \\ \mathcal{A} &= \mathcal{P} \cup \mathcal{F} \\ \end{split}$$

Figure: Surface Condition Map $C_{\partial V}$: For every atom x_i , the closest surface points y_j are computed.

Results: Ligand-Based Drug Design

	SimS (†)	MaxSimS (†)	SimG (\downarrow)
Virtual Screening	0.729	0.807	0.226
ShapeMol	0.677	0.797	0.239
ShapeMol+g	0.744	0.849	0.242
UniGuide (ShapeMol [U])	0.726	0.827	0.248
UniGuide (ShapeMol)	<u>0.760</u>	0.857	0.240
UniGuide (EDM)	0.749	<u>0.860</u>	<u>0.212</u>

Unified Guidance for Geometry-Conditioned Molecule Generation

Guiding an off-the-shelf EDM model for LBDD shows superior performance, even to Virtual Screening.

Unconditional Samples

Results: Structure-Based Drug Design UniGuide outperforms different diffusion-based conditioning approaches.

Quantitative Comparison on CrossDocked. We highlight in **bold** the best approach given the same backbone and <u>underline</u> the best approach overall.

	Vina Score (\downarrow)	Vina Min (\downarrow)	Vina Dock (\downarrow)	QED (†)
Test set	-6.362	-6.707	-7.450	0.48
DecompDiff TargetDiff	-4.750 -5.466	-6.170 -6.643	-7.802	0.48
DiffSBDD-cond DiffSBDD UniGuide	-3.684 -4.097 - 5.103	-4.670 -6.306 - 6.610	-6.941 -7.889 - 7.921	0.47 <u>0.57</u> <u>0.57</u>

Unified Guidance for Geometry-Conditioned Molecule Generation

Results: Fragment-Based Drug Design UniGuide is readily applicable to various FBDD settings in a unified fashion

Unified Guidance for Geometry-Conditioned Molecule Generation

Generated

VINA Dock: -10.2

Unified Guidance for Geometry-Conditioned Molecular Generation

Sirine Ayadi^{*1,2} Leon Hetzel^{*1,2,3}

Fabian Theis^{1,2,3}

Reference

Unconditional Samples

Johanna Sommer^{*1,2}

Stephan Günnemann^{1,2}

Guided Samples

https://www.cs.cit.tum.de/daml/uniguide/

