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Federated Learning

Federated learning (FL), a communication-efficient and privacy-preserving
alternative to training on centrally aggregated data, relies on collaboration
between clients devices.
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Client Sampling

Prior Works DivFL (Balakrishnan et al., 2022), CS (Fraboni et al., 2021):
aim to select clients such that the resulting model update is an unbiased
estimate of the true update while minimizing the variance
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Assumption (Bounded Dissimilarity under Data Heterogeneity)

Gradient ∇Fk(W
(t)) of the k-th local model at global round t is such that∥∥∥∇Fk(W

(t))−∇F (W(t))
∥∥∥2 ≤ κ− ρeβ(H(D(k))−H(D0)) = σ2

k ,

where D(k) is the data label distribution of client k, D0 denotes uniform
distribution, H(·) is Shannon’s entropy of a stochastic vector, and
β > 0, κ > ρ > 0.
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Convergence Rate Relying on Selected Clients

With Assumptions:

Fk(·) is L-smooth;

gk(W
(t)) is unbiased and the variance is bounded by σ2;

Bounded Dissimilarity under Data Heterogeneity

Theorem

Let η and R be the learning rate and the number of local epochs,
respectively. If the learning rate is such that η ≤ 1

8LR ,R ≥ 2, then
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where A1, A2, Φ are positive constants, and ωt
k is the probability of

sampling client k at round t.
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Estimating local data heterogeneity

We can obtain the correlation between ∆bj and the label distribution.

E [∆bj ] = η

(
Dj

C∑
c=1

Sc − Sj

)
,

where Dj is the proportion of samples with label j in the training batch.

We define a proxy function to estimate the data heterogeneity of client k,

Ĥ(∆b(k)) ≜ H(softmax(∆b(k), τ)),

where H(·) is Shannon’s entropy and τ is a temperature parameters.
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Heterogeneity-guided Clustering

Clustering: the server performs clustering algorithm to group clients with
varying level of heterogeneity based on the distance

Distance(u, k) = arc cos

(
∆b(u) ·∆b(k)

|∆b(u)| · |∆b(k)|

)
+ λ

∣∣∣Ĥ∆b(u))− Ĥ(∆b(k))
∣∣∣ .

Hierarchical Sampling: sample clients from each cluster with probability
based on the average value H̄m across all clients in the cluster
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where γt is a hyper-parameter.

Huancheng Chen NeurIPS2024 6 / 9



Experimental Results

Part of the results on CIFAR100 dataset:

(a) mild heterogeneity (b) medium heterogeneity (c) severe heterogeneity

Observation:

HiCS-FL (ours) improves the converged accuracy under medium and
severe heterogeneity.
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Experimental Results

Schemes
FMNIST CIFAR10 Mini-ImageNet

acc = 0.75 speedup acc = 0.6 speedup acc = 0.5 speedup
Random 149 1.0× 898 1.0× 191 1.0×
pow-d 79 1.8↑ 1037 0.9↓ 432 0.4↓
CS 114 1.3↑ 748 1.2↑ 186 1.0×

DivFL 478 0.3↓ 1417 0.6↓ 726 0.3 ↓
FedCor 88 1.7↑ 711 1.3↑ 229 0.8↑
HiCS-FL 60 2.5↑ 123 7.3↑ 86 2.2↑

Observation:

HiCS-FL (ours) can accelerate the convergence by at most 7.3 times.
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