Heterogeneity-Guided Client Sampling: Towards Fast and Efficient Non-IID Federated Learning

Presenter: Huancheng Chen University of Texas at Austin

Nov, 2024

Federated Learning

Federated learning (FL), a communication-efficient and privacy-preserving alternative to training on centrally aggregated data, relies on collaboration between clients devices.

NeurIPS2024

Client Sampling

Prior Works DivFL (Balakrishnan et al., 2022), CS (Fraboni et al., 2021): aim to select clients such that the resulting model update is an unbiased estimate of the true update while minimizing the variance

$$\min_{\mathcal{S}^{(t)}} \left\| \frac{1}{N} \sum_{k=1}^{N} \nabla F_k(\mathbf{W}^{(t)}) - \frac{1}{K} \sum_{k \in \mathcal{S}^{(t)}} \nabla F_k(\mathbf{W}^{(t)}) \right\|_2^2$$

Assumption (Bounded Dissimilarity under Data Heterogeneity)

Gradient $\nabla F_k(\mathbf{W}^{(t)})$ of the k-th local model at global round t is such that

$$\left\|
abla F_k(\mathbf{W}^{(t)}) -
abla F(\mathbf{W}^{(t)}) \right\|^2 \leq \kappa -
ho e^{eta \left(H(\mathcal{D}^{(k)}) - H(\mathcal{D}_0) \right)} = \sigma_k^2,$$

where $\mathcal{D}^{(k)}$ is the data label distribution of client k, \mathcal{D}_0 denotes uniform distribution, $H(\cdot)$ is Shannon's entropy of a stochastic vector, and $\beta > 0, \kappa > \rho > 0$.

With Assumptions:

- $F_k(\cdot)$ is *L*-smooth;
- $g_k(\mathbf{W}^{(t)})$ is unbiased and the variance is bounded by σ^2 ;
- Bounded Dissimilarity under Data Heterogeneity

Theorem

Let η and R be the learning rate and the number of local epochs, respectively. If the learning rate is such that $\eta \leq \frac{1}{8LR}$, $R \geq 2$, then

$$\min_{t\in[\mathcal{T}]} \left\|\nabla F(\mathbf{W}^{(t)})\right\|^2 \leq \frac{1}{\mathcal{T}} \left(\frac{F(\mathbf{W}^{(0)}) - F(\mathbf{W}^*)}{\mathcal{A}_1} + \mathcal{A}_2 \sum_{t=0}^{\mathcal{T}-1} \sum_{k=1}^N \omega_k^t \sigma_k^2\right) + \mathbf{\Phi},$$

where A_1 , A_2 , Φ are positive constants, and ω_k^t is the probability of sampling client k at round t.

We can obtain the correlation between $\Delta \mathbf{b}_j$ and the label distribution.

$$\mathbb{E}\left[\Delta \mathbf{b}_{j}\right] = \eta \left(D_{j}\sum_{c=1}^{C} S_{c} - S_{j}\right),\,$$

where D_j is the proportion of samples with label j in the training batch.

We define a proxy function to estimate the data heterogeneity of client k,

$$\hat{H}(\Delta \mathbf{b}^{(k)}) \triangleq H(\operatorname{softmax}(\Delta \mathbf{b}^{(k)}, \tau)),$$

where $H(\cdot)$ is Shannon's entropy and τ is a temperature parameters.

Clustering: the server performs clustering algorithm to group clients with varying level of heterogeneity based on the distance

$$\mathsf{Distance}(u,k) = \arccos\left(\frac{\Delta \mathbf{b}^{(u)} \cdot \Delta \mathbf{b}^{(k)}}{|\Delta \mathbf{b}^{(u)}| \cdot |\Delta \mathbf{b}^{(k)}|}\right) + \lambda \left|\hat{H} \Delta \mathbf{b}^{(u)}\right) - \hat{H}(\Delta \mathbf{b}^{(k)})\right|.$$

Hierarchical Sampling: sample clients from each cluster with probability based on the average value \bar{H}_m across all clients in the cluster

$$\pi^{t} = \left[\frac{\exp(\gamma^{t}\bar{H}_{1}^{t})}{\sum_{m=1}^{M}\exp(\gamma^{t}\bar{H}_{m}^{t})}, \dots, \frac{\exp(\gamma^{t}\bar{H}_{M}^{t})}{\sum_{m=1}^{M}\exp(\gamma^{t}\bar{H}_{m}^{t})}\right],$$
(1)

where γ^t is a hyper-parameter.

Part of the results on CIFAR100 dataset:

Observation:

• HiCS-FL (ours) improves the converged accuracy under medium and severe heterogeneity.

Schemes	FMNIST		CIFAR10		Mini-ImageNet	
	acc = 0.75	speedup	acc = 0.6	speedup	acc = 0.5	speedup
Random	149	1.0 imes	898	1.0 imes	191	1.0 imes
pow-d	79	1.8↑	1037	0.9↓	432	0.4↓
CS	114	1.3↑	748	1.2↑	186	1.0 imes
DivFL	478	0.3↓	1417	0.6↓	726	0.3 ↓
FedCor	88	$1.7\uparrow$	711	1.3↑	229	0.8↑
HiCS-FL	60	2.5 ↑	123	7.3 ↑	86	2.2 ↑

Observation:

• HiCS-FL (ours) can accelerate the convergence by at most 7.3 times.

- Balakrishnan, R., Li, T., et al. (2022). Diverse client selection for federated learning via submodular maximization. In *International Conference on Learning Representations*.
- Fraboni, Y., Vidal, R., et al. (2021). Clustered sampling: Low-variance and improved representativity for clients selection in federated learning. In *International Conference on Machine Learning*.