

HDR-GS: Efficient High Dynamic Range Novel View Synthesis at 1000x Speed via Gaussian Splatting

Yuanhao Cai , Zihao Xiao, Yixun Liang, Minghan Qin, Yulun Zhang, Xiaokang Yang, Yaoyao Liu, Alan Yuille

Johns Hopkins University

Method

• Experiment

Method

Experiment

Low Dynamic Range Images
Value range [0, 255]
Iimited compared to human eyes

High Dynamic Range Images

Value range [0, +infinity]

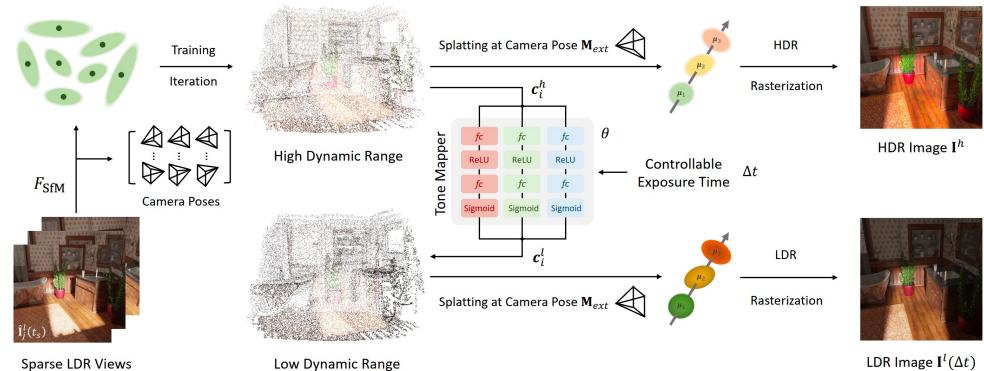
Can render more vivid details and light change

Existing 3D HDR Imaging methods
Based on NeRF
The speed is very slow due to volume rendering

Low Dynamic Range

High Dynamic Range

This work develops the first 3D Gaussian Splatting based framework for 3D HDR imaging



Method

Experiment

- (a) Recalibration and Initialization
- (b) Dual Dynamic Range Gaussian Point Cloud Model
- (c) Parallel Differentiable Rasterization
- (a) We use colmap to run the Structure-from-Motion to recalibrate the data $\mathbf{M}_{int}, \{\mathbf{M}_{ext}^j\}_{j=1}^{N_v}, N_p, \{\boldsymbol{\mu}_i\}_{i=1}^{N_p} = F_{\text{SfM}}(\{\hat{\mathbf{I}}_j^l(t_s)\}_{j=1}^{N_v})$
- (b) We design a Dual dynamic range Gaussian point cloud model with HDR and LDR color by an MLP tone-mapper
- (c) Two rasterization processes are performed to render the HDR and LDR images

Method

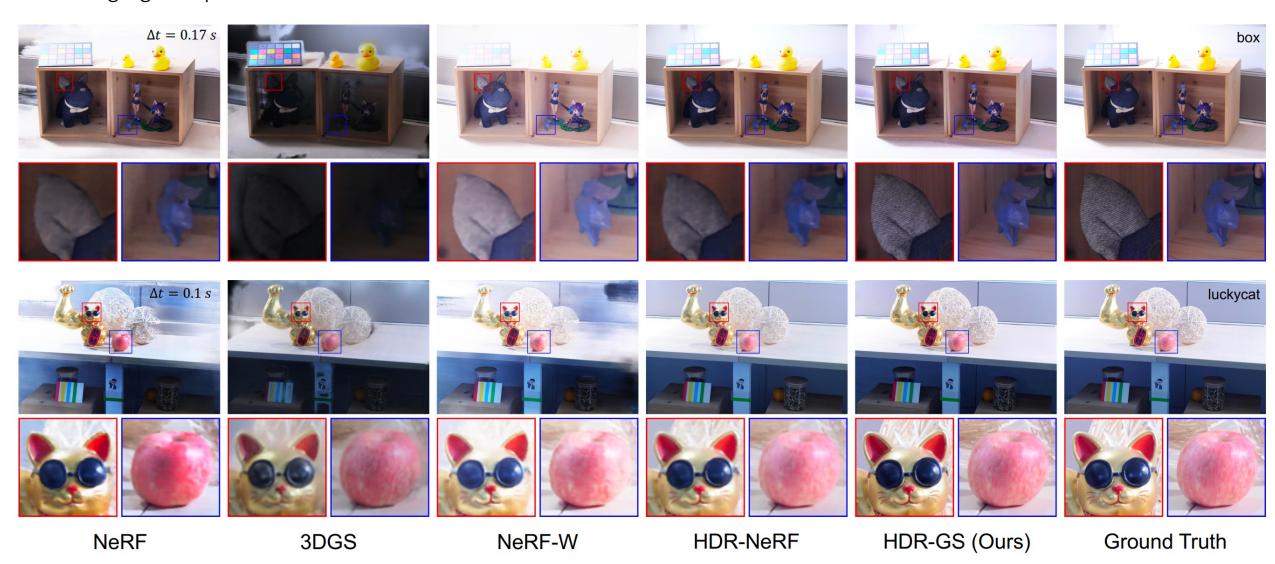
• Experiment

Method	Training	ning Inference		LDR-OE (t_1, t_3, t_5)			LDR-NE (t_2, t_4)			HDR		
	Time (min)	Speed (fps)	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	
NeRF [13]	405	0.190	13.97	0.555	0.376	14.51	0.522	0.428	_	_	_	
3DGS [15]	38	121	19.46	0.690	0.276	18.97	0.778	0.309	_	_	_	
NeRF-W [80]	437	0.178	29.83	0.936	0.047	29.22	0.927	0.050				
HDR-NeRF [14]	542	0.122	39.07	0.973	0.026	37.53	0.966	0.024	36.40	0.936	0.018	
HDR-GS (Ours)	34	126	41.10	0.982	0.011	36.33	0.977	0.016	38.31	0.972	0.013	

Real Dataset

Method	LD	OR-OE $(t_1, t_3,$	$t_5)$	LDR-NE (t_2, t_4)			
Method	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	
NeRF [13]	14.95	0.661	0.308	14.44	0.731	0.255	
3DGS [15]	17.19	0.806	0.103	19.50	0.727	0.152	
NeRF-W [80]	28.55	0.927	0.094	28.64	0.923	0.089	
HDR-NeRF [14]	31.63	0.948	0.069	31.43	0.943	0.069	
HDR-GS (Ours)	35.47	0.970	0.022	31.66	0.965	0.030	

NEURAL INFORMATION PROCESSING SYSTEMS


LDR imaging comparison on the synthetic dataset

NEURAL INFORMATION PROCESSING SYSTEMS

LDR imaging comparison on the real dataset

HDR imaging comparison

Code and data are publicly available at https://github.com/caiyuanhao1998/HDR-GS