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Motivation
How can the existence of evolving patterns in
data sequences be determined?
Consider the scenario of a person repeatedly toss-
ing a coin. In this case, historical information does
not influence the outcome of the next toss.

…

Can one determine the historical span that sig-
nificantly influences the current time point?
How do we determine the order, i.e., the optimal
number of past observations, of an autoregressive
model in a principled way?
How can we determine if the collected features
are sufficient to reveal evolving patterns?
For instance, to achieve better weather forecasting,
how can one determine the essential features, such
as altitude, humidity, and geographic location, for
gathering a comprehensive set of information for
forecasting?

Contributions
We propose EVORATE, which enables quantita-
tively measuring the evolving patterns existing in
high-dimensional sequential data by utilizing the
neural mutual information estimator.
EVORATE can be applied to assess temporal order
and conduct feature selections in sequential data.
We further proposed EVORATEW to leverage opti-
mal transport to build the correspondence between
snapshots at the different timestamps, and hence
allow the Mutual Information (MI) approximations.

Motivation II
The figurea illustrates that, without tracking cell
trajectories, we only observe clusters of data at dif-
ferent timestamps, making it essential to estimate
correspondence between time points to uncover
individual cells’ evolving patterns.

aSource: Charlotte et al., Optimal transport in learning, control, and dynamical systems. ICML Tutorial 2023.

EvoRate measures evolving patterns via MI
EVORATE estimates the empirical sequential MI
Î(Zt

t−k+1;Zt+1) by defining m : Rk×D × RD → R,
m(xk1, y) = −∥f(g(x1), .., g(xk))− g(y)∥22:

EvoRate := Ezt+1
t−k+1

∼P (Zt−k+1,...,Zt+1)
− ||f(g(zt−k+1), . . . , g(zt))− g(zt+1)||22

− logEzt
t−k+1

∼P (Zt−k+1,...,Zt),zt+1∼P (Zt+1)
e−||f(g(zt−k+1),...,g(zt))−g(zt+1)||22 , (1)

where g : RD → Rd is an encoder.
Proposition Let H denote the entropy. For autore-
gression tasks, the expected MLE loss satisfy:

Lmle = DKL(P (Zt+1|Zt
t−k+1), Q(Zt+1|Zt

t−k+1))︸ ︷︷ ︸
(i) Model related

+H(Zt+1)− I(Zt+1;Zt
t−k+1)︸ ︷︷ ︸

(ii) Data related

Estimate the absent correspondences
The distance loss according to a joint distribution
measurement π

Lt
W(π, f) = E(zt,zt+1)∼π||f(g(zt))− g(zt+1)||22 (2)

where g is fixed from updated gradients computed
from Lt

W.
The optimal transport plan π∗ to approximate the
real joint distribution

π∗(Zt, Zt+1) = argmin
π ∈ Π(P (Zt), P (Zt+1))

Lt
W(π, f), ∀t ∈ {1, . . . , T − 1}, (3)

EvoRateW for w/o correspondence cases
Use π∗(Zt, Zt+1) to estimate joint distribution P , and
then obtain the following estimator with π∗(Zt, Zt+1)

EvoRateW = E(zt,zt+1)∼π∗(Zt,Zt+1) − ||f(g(zt)))− g(zt+1)||22

− logEzt∼P (Zt),zt+1∼P (Zt+1)e
−||f(g(zt))−g(zt+1)||22

Empirical Results

Figure 1. (a) k-order EVORATE estimation. (b) EVORATE esti-
mation on a different number of features. (c) EVORATE esti-
mation of the video prediction tasks with a different corrup-
tion rate.

Figure 2. (a) k-order EVORATE estimation. (b) EVORATE esti-
mation on a different number of features. (c) EVORATE esti-
mation of the video prediction tasks with a different corrup-
tion rate.

Crypto Player Traj. M4-Monthly M4-Weekly M4-Daily
RMSE/sMAPE 6.91 1.16 11.93 7.25 2.99

LEs 0.026 0.052 0.011 0.013 0.020
Trend 0.02 0.01 0.48 0.13 0.05

Seasonality 0.00% 0.00% 66.34% 0.00% 0.00%
EvoRate 2.80 4.67 1.58 2.25 2.26

Table 1. In the above table, a larger EvoRate consistently
indicates a smaller potential prediction error (RMSE/sMAPE)

for the dataset.

RGAUSSIAN CIRCLE SINE RMNIST PORTRAITS CALTRAN POWERSUPPLY

INVARIANT (ACC:%) 47.5 51.3 63.2 39.0 85.4 64.1 70.8
EVOLVING (ACC:%) 97.7 73.8 71.4 46.4 89.1 70.6 75.7
ACCEVO - ACCINV (%) 50.2 22.5 8.2 7.4 3.7 6.5 4.9

EVORATEW 1.58 0.58 0.54 0.95 0.25 0.28 0.46

Table 2. The estimated mutual information for the evolving
domains for different datasets. The reported results are the

average accuracy of the multiple target domains.


