Towards Understanding Evolving Patterns in Sequential Data $\mathsf{Quhao Zeng}^1$, Long-Kai Huang 2 , Qi Chen 3 , Charles X. Ling 1 , Boyu Wang 1 1 University of Western Ontario 2 Tencent AI Lab 3 Laval University

Motivation

How can the existence of evolving patterns in data sequences be determined?

• Can one determine the historical span that sig**nificantly influences the current time point?**

Consider the scenario of a person repeatedly tossing a coin. In this case, historical information does not influence the outcome of the next toss.

- We propose **EVORATE**, which enables quantitatively measuring the evolving patterns existing in high-dimensional sequential data by utilizing the *neural mutual information estimator*.
- **EVORATE** can be applied to assess temporal order and conduct feature selections in sequential data.
- We further proposed **EVORATE**_W to leverage optimal transport to build the correspondence between snapshots at the different timestamps, and hence allow the Mutual Information (MI) approximations.

How do we determine the *order*, i.e., the optimal number of past observations, of an autoregressive model in a principled way?

How can we determine if the collected features are sufficient to reveal evolving patterns? For instance, to achieve better weather forecasting, how can one determine the essential features, such | as altitude, humidity, and geographic location, for gathering a comprehensive set of information for forecasting?

The figure^a illustrates that, without tracking cell trajectories, we only observe clusters of data at different timestamps, making it essential to estimate **correspondence** between time points to uncover individual cells' evolving patterns.

EVORATE estimates the empirical sequential MI \hat{I} I(**Z** t $\begin{array}{ccc} t_{-k+1}; Z_{t+1}) & \text{by defining}\ m & : & \mathbb{R}^{k\times D}\times\mathbb{R}^D\ \rightarrow & \mathbb{R}, \end{array}$ $m(x_1^k$ $\langle f_1, y \rangle = -\|f(g(x_1), \ldots, g(x_k)) - g(y)\|_2^2$ $\frac{2}{2}$.

 $\text{EvoRate} := \mathbb{E}_{\mathbf{z}_{t-1}^{t+1}}$ $t_{-k+1}^{t+1} \sim P(\mathbf{Z}_{t-k+1},...,Z_{t+1})$ $-||f(g(z_{t-k+1}),\ldots,g(z_t))-g(z_{t+1})||_2^2$ 2 $e^{-\left|\left|f(g(z_{t-k+1}),...,g(z_t))-g(z_{t+1})\right|\right|_2^2}$ $\bar{^2}, \quad \text{(1)}$

Contributions

− log E**^z** t $t_{-k+1}^t \sim P(Z_{t-k+1},...,Z_t),z_{t+1} \sim P(Z_{t+1})$

where $g : \mathbb{R}^D \to \mathbb{R}^d$ is an encoder. **Proposition** Let H denote the entropy. For autoregression tasks, the expected MLE loss satisfy:

> $\mathcal{L}_{mle} = D_{\text{KL}}(P(Z_{t+1}|\mathbf{Z}_{t-k+1}^t), Q(Z_{t+1}|\mathbf{Z}_{t-k+1}^t)) + H(Z_{t+1}) - I(Z_{t+1};\mathbf{Z}_{t-k+1}^t)$ (i) Model related (ii) Data related

The optimal transport plan π^* to approximate the real joint distribution

> $\pi^*(Z_t, Z_{t+1}) = \text{arg min}$ $\pi \in \Pi(P(Z_t), P(Z_{t+1}))$ $\mathcal{L}_{\mathcal{W}}^{t}(\pi, f), \quad \forall t \in \{1, ..., T - 1\},$ (3)

Motivation II

 $\text{EvoRate}_{\mathcal{W}} = \mathbb{E}_{(z_t, z_{t+1}) \sim \pi^*(Z_t, Z_{t+1})} - ||f(g(z_t))) - g(z_{t+1})||_2^2$ 2 $-\log \mathbb{E}_{z_t \sim P(Z_t), z_{t+1} \sim P(Z_{t+1})} e^{-||f(g(z_t)) - g(z_{t+1})||_2^2}$ 2

• Figure 1. (a) *k*-order EVORATE estimation. (b) EVORATE estimation on a different number of features. (c) EVORATE estimation of the video prediction tasks with a different corrup-

a Source: Charlotte et al., Optimal transport in learning, control, and dynamical systems. ICML Tutorial 2023.

EvoRate measures evolving patterns via MI

Estimate the absent correspondences

• The distance loss according to a joint distribution measurement π

> $\mathcal{L}_{\mathcal{W}}^{t}(\pi, f) = \mathbb{E}_{(z_t, z_{t+1}) \sim \pi} ||f(g(z_t)) - g(z_{t+1})||_2^2$ $\frac{2}{2}$ (2)

where g is fixed from updated gradients computed from $\mathcal{L}_{\mathcal{W}}^{t}$.

Empirical Results

Figure 2. (a) k-order EVORATE estimation. (b) EVORATE estimation on a different number of features. (c) EVORATE estimation of the video prediction tasks with a different corrup-

Table 1. In the above table, a larger EvoRate consistently indicates a smaller potential prediction error (RMSE/sMAPE) for the dataset.

Table 2. The estimated mutual information for the evolving domains for different datasets. The reported results are the average accuracy of the multiple target domains.

EvoRate_W for w/o correspondence cases

Use $\pi^*(Z_t, Z_{t+1})$ to estimate joint distribution P, and then obtain the following estimator with $\pi^*(Z_t, Z_{t+1})$