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“The domain gap between synthetic data and real-world data 
is like an ocean, separating us from each other.”

The real-world image dehazing task remains challenging due to the complexities in accurately modeling 
real haze distributions and the scarcity of paired real-world data.



To address these challenges, our contributions are summarized as follows:

• We propose a dehazing method, the COopeRative Unfolding Network (CORUN)

• We propose a semi-supervised domain-adaptation framework, Coherence-based Pseudo-label Generator (Colabator)

• We evaluate our CORUN with the Colabator framework on real-world dehazing tasks. Abundant experiments demonstrate 
that our method achieves state-of-the-art performance.

“Don’t worry, with Colabator’s help, even the widest 
domain gap can feel as close as a dear friend from afar, 

bridging the distance with ease.”



The atmospheric scattering model (ASM): 

Hazy image Clear image Transmission mapAtmospheric light

{R,G,B}

Some of previous ASM-based Methods: Estimate 𝐴	and 𝑡(𝑥) then calculate:

{R,G,B}

• Estimating atmospheric light and the transmission map 
separately ignores the correlated features between them.

• It ignores the diversity of degradation in real-world scenes 
beyond hazy.



• We implicitly estimate 𝑨 to focus on the detailed characterization of the 
scene and the relationship between volumetric haze and scene:

Where 𝐏:	            𝐉:  𝐈: all-one matrix    𝐓: Transmission Map 

{R,G,B} {R,G,B}

• Based on the simplify formulation, we can define our cooperative dehazing energy function like:

Where 𝜓(𝐉) and 𝜙(𝐓) are regularization terms on 𝐉 and 𝐓.

• We introduce two auxiliary variables /𝐓 and 0𝐉 to approximate 𝐓	and 𝐉, respectively. This leads to the 
following minimization problem:

: Scene

Cooperative Unfolding Network



Now, let’s optimize the transmission and scene based on PGD algorithm and our 
cooperative deep unfolding network. For Transmission Optimization:

• Give the estimated coarse transmission map T and dehazed image 0J!"# at iteration 𝑘 − 1, the variable T can be updated 
as:

• We construct the proximal mapping between /T and T by a encoder-decoder like neural network which we named T-CPMM 
and denoted as 𝑝𝑟𝑜𝑥$:

• The auxiliary variables /T , which we calculate by our proposed TGDM can be formulated as:

The variable 𝜆% is a learnable parameter, we learn this parameter at each stage during the end-to-end learning process, 
allowing the network to adaptively control the updates in iteration.

(ii) Details of TGDM at the !!" stage.

TG
D
M

SG
D
M

S-
C
PM

M

Stage "

TG
D
M

SG
D
MT-
C
PM

M

S-
C
PM

M

Stage #

TG
D
M

SG
D
M

T-
C
PM

M

S-
C
PM

M

Stage$− "

$%

& 

!!!
&'#$%
'#$%

()#$%
)#$%

!!!

TG
D
M

SG
D
MT-
C
PM

M

S-
C
PM

M

Stage $

Learnable parameter!/#

Element-wise summation

∑ Channel-wise summation

!(#) Matrix transposition

(#)!" Multiplicative inverse

Element-wise subtraction

Dot product

Element-wise multiplication!

(i) The architecture of the proposed CORUN.
Initial	'

P	(Initial )) 

(iii) Details of SGDM at the !!" stage.

TG
D
M

SG
D
M

S-
C
PM

M

Init Stage

TG
D
M

SG
D
MT-
C
PM

M

S-
C
PM

M

Stage !

TG
D
M

SG
D
M

T-
C
PM

M

S-
C
PM

M

Stage"− !

$%

& 

!!!
$%!"#
%!"#

'&!"#
&!"#

!!!

TG
D
M

SG
D
MT-
C
PM

M

S-
C
PM

M

Stage "

Learnable parameter!/#

Element-wise summation

∑ Channel-wise summation

!(#) Matrix transposition

(#)!" Multiplicative inverse

Element-wise subtraction

Product

Element-wise multiplication!

∑

∑

P

&!!

'(!"#

!

(#)"# !
!

1

&!!
#

S-CPMM

P

(!"#

(#)"#

'(! (!

#(&)

!

(i) The architecture of the proposed CUN.

(ii) Details of CUN at the !!" stage.
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• Give /T!	 and J, the variable J can be updated as:

• Same as the proximal mapping process in the transmission optimization, S-CPMM has the similar structure as T-CPMM but 
different inputs, we denote S-CPMM as 𝑝𝑟𝑜𝑥&:

• Where the 0J! we process by our SGDM can be presented as:

As the 𝜆% in transmission optimization, 𝜇% is also a learnable parameter to bring more generalization capabilities to the 
network.

For Scene Optimization:

(ii) Details of TGDM at the !!" stage.
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(ii) Details of TGDM at the !!" stage.
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(iii) Details of SGDM at the !!" stage.
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(!"#• Each stage of CORUN includes Transmission and Scene Gradient Descent Modules (T&SGDM) paired with 
Cooperative Proximal Mapping Modules (T&CPMM). These modules work together to model atmospheric 
scattering and image scene features, enabling the adaptive capture and restoration of global composite 
features within the scene. 

• Each CPMM block uses a 4-channel convolution to embed T and J into a feature map. This enables S-CPMM to 
learn additional scene feature information, such as atmospheric light and blur, assisting SGDM in generating higher-
quality dehazed results with more details. 

• Our method provides better degradation resistance in the generated results compared to other methods, resulting in 
higher image quality. It delivers better results in real-world dehazing tasks.



• Iterative mean-teacher dehazing:

This method applies strong data augmentation 𝒜' to real hazy images, with the teacher network using the original 
image and the student network using the augmented one, resulting in varying dehazing quality, reducing overfitting 
and progressively improving supervision reliability. 

• Label trust weighting:

This method assigns reliability weights to locations in pseudo-dehazed images from the teacher network by 
evaluating haze density and image quality. Using CLIP-based and non-reference metrics (𝒟 and 𝒬), it calculates 
normalized scores to emphasize clearer, higher-quality regions, improving model supervision.

Pre-training network using
paired synthetic data. 

Fine-tuning network using paired synthetic data and degraded real data
by Colabator with only 5000 iter. No additional computational cost during inference.
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(i) Pre-training phase (ii) Fine-tuning phase with our Colabator
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Coherence-based Pseudo Labeling by Colabator:



• Optimal label pool:

The optimal label pool 𝒞 maintains the best 
pseudo-labels by updating them only when new 
dehazed images show improvement, thus 
stabilizing training and enhancing label reliability 
within the Colabator framework.

• Weights update:

The teacher network updates its weights through 
an exponential moving average of the student’s 
weights, enabling stable, continuous integration 
of learned parameters.

Coherence-based Pseudo Labeling by Colabator:



OursHazy image PSD D4DAD RIDCPDGUNPDN

Results:



Partial Results:
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Thank you for listening !


