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Why Peptide?

AntibodySmall Molecule

Drawbacks Advantages

• Low specificity

• Toxicity

• Low synthesizability

V.S. V.S.

Advantages Drawbacks

• Low cell permeability 

• Injection

• High cost

• High specificity

• Good safety

• High synthesizability

• High cell permeability

• Oral availability

• Low cost

Therapeutic peptides: current applications and future directions. Signal transduction and targeted therapy 7.1 (2022): 48.
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? Design

Interactions

Peptide
Receptor

Peptide Design: Given the binding site 𝒢! = {(𝑥" , 𝑋")}, the model is required to generate the full-atom structure 
of a peptide binder 𝒢# = 𝑥$ , 𝑋$ , where 𝑥 and 𝑋 denote the amino acid type and the coordinates of all atoms 
in the amino acid.
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Challenges
Variable Data Length Diverse Pocket Geometry

Ø �⃗�~𝒩(�⃗�, Σ) with diverse expectation and covariance, 

leading to poor generalizability

Ø Current diffusion models tend to produce exploding 

coordinates for some binding sites in the test set.

𝑥$% = 𝑊
𝑋$% ∈ ℝ&'×)

𝑥$%*& = 𝐴
𝑋$%*& ∈ ℝ+×)

Ø Different amino acids have different number of atoms

Ø Denosing amino acid types result in abrupt changes in 

the number of atoms (i.e. data length), which is not 

compatible with current diffusion framework.
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Peptide Design with Geometric LAtent Diffusion (PepGLAD)
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Data Space

Peptide
Receptor

Full-Atom Variational AutoEncoder

Latent Space

Variable Data Length Diverse Pocket Geometry
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Receptor-Specific Affine Transformation



8

Receptor-Specific Affine Transformation
easily invertible normalization trick
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Cholesky Decomposition
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Dataset: ProtFrag

70K peptide-like fragments within monomers for training the full-atom variational autoencoder
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70k
Peptide-Like 
Fragments 
for 
Pretraining
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Dataset: PepBench
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Ø Training/Validation: 6K cleaned non-redundant peptides (4-25 residues) from PDB

Ø Test: 93 complexes curated by experts from existing literature[1]

Ø Split: Cluster all complexes with target proteins sequence identity above 40%, and 

remove the complexes sharing the same clusters with those from the test set. Such 

split test the generalization ability of the generative models with respect to different 

target proteins.

Ø Url: https://doi.org/10.5281/zenodo.13358010

[1] Tsaban, Tomer, et al. "Harnessing protein folding neural networks for peptide–protein docking." Nature communications 13.1 (2022): 176.

https://doi.org/10.5281/zenodo.13358010
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Exp1: Sequence-Structure Co-Design
Metrics:

• Diversity: Ratio of unique clusters of sequence-structure clustering

• Consistency:Association between sequence clusters and structure clusters (similar sequences should 

lead to similar structures)

• ∆G: Binding energy measured by Rosetta

• Success: Ratio of ∆G < 0
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Exp2: Binding Conformation Generation
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Ablation Study
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Significance: 

Affine Transformation > Full-Atom Modeling > Masked Autoencoder > Protein 

Fragments Training
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Conclusion
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Ø PepGLAD: full-atom model for peptide design given the binding site on the target protein

Ø We curate PepBench with carefully selected test complexes and split criterion to test the 

generalization ability across different target proteins

Ø We curate ProtFrag of 70K peptide-like fragments for data augmentation, which may 

facilitate future research on peptide design

Ø PepGLAD surpasses state-of-the-art models in terms of sequence-structure co-design and 

binding conformation generation
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