

## Full-Atom Peptide Design with Geometric Latent Diffusion

Xiangzhe Kong, Yinjun Jia, Wenbing Huang, Yang Liu







#### Contents

- 1. Introduction
- 2. Task definition
- 3. Method
- 4. Experiments
- 5. Conclusion

Full-Atom Peptide Design with Geometric Latent Diffusion (NeurIPS 2024)



Therapeutic peptides: current applications and future directions. Signal transduction and targeted therapy 7.1 (2022): 48.



**Peptide Design:** Given the binding site  $\mathcal{G}_b = \{(x_i, \vec{X}_i)\}$ , the model is required to generate the full-atom structure of a peptide binder  $\mathcal{G}_p = \{(x_j, \vec{X}_j)\}$ , where x and  $\vec{X}$  denote the amino acid type and the coordinates of all atoms in the amino acid.





## Introduction Task Method Experiments Conclusion

#### **Peptide Design with Geometric LAtent Diffusion (PepGLAD)**











#### **Dataset:** ProtFrag

70K peptide-like fragments within monomers for training the full-atom variational autoencoder



#### Dataset: PepBench

- > Training/Validation: 6K cleaned non-redundant peptides (4-25 residues) from PDB
- Test: 93 complexes curated by experts from existing literature[1]
- Split: Cluster all complexes with target proteins sequence identity above 40%, and remove the complexes sharing the same clusters with those from the test set. Such split test the generalization ability of the generative models with respect to different target proteins.
- ➤ Url: <u>https://doi.org/10.5281/zenodo.13358010</u>

### **Exp1: Sequence-Structure Co-Design**

**Metrics:** 

- Diversity: Ratio of unique clusters of sequence-structure clustering
- **Consistency:** Association between sequence clusters and structure clusters (similar sequences should lead to similar structures)
- $\Delta G$ : Binding energy measured by Rosetta
- **Success:** Ratio of  $\Delta G < 0$

| Model             | PepBench                |         |                        |               |         | PepBDB  |                        |         |  |
|-------------------|-------------------------|---------|------------------------|---------------|---------|---------|------------------------|---------|--|
|                   | $\text{Div.}(\uparrow)$ | Con.(↑) | $\Delta G(\downarrow)$ | Success       | Div.(↑) | Con.(†) | $\Delta G(\downarrow)$ | Success |  |
| Test Set          | -                       | -       | -35.25                 | 95.70%        | -       | -       | -35.96                 | 95.79%  |  |
| HSRN <sup>3</sup> | 0.158                   | 0.0     | $\geq 0$               | 10.46%        | 0.111   | 0.0     | $\geq 0$               | 10.86%  |  |
| dyMEAN            | 0.150                   | 0.0     | -2.26                  | 14.60%        | 0.150   | 0.0     | -1.92                  | 6.26%   |  |
| DiffAb            | 0.427                   | 0.670   | -21.20                 | 49.87%        | 0.269   | 0.463   | -18.40                 | 41.45%  |  |
| PepGLAD (ours)    | 0.506                   | 0.789   | -21.94                 | <b>55.97%</b> | 0.692   | 0.923   | -21.53                 | 48.47%  |  |

#### Introduction Experiments Task Method Conclusion $\checkmark$ **Exp2: Binding Conformation Generation** Reference (PDB: 3vxw) Generated by PepGLAD FlexPepDock dyMEAN HSRN .... AlphaFold 2 DiffAb PepGLAD $RMSD_{C\alpha} = 1.86Å$

| Model          |                                                 | PepBench                                |                   | PepBDB                                            |                                         |                   |  |
|----------------|-------------------------------------------------|-----------------------------------------|-------------------|---------------------------------------------------|-----------------------------------------|-------------------|--|
|                | $\mathrm{RMSD}_{\mathrm{C}_{lpha}}(\downarrow)$ | $\text{RMSD}_{\text{atom}}(\downarrow)$ | $DockQ(\uparrow)$ | $\mathrm{RMSD}_{\mathrm{C}_{\alpha}}(\downarrow)$ | $\text{RMSD}_{\text{atom}}(\downarrow)$ | $DockQ(\uparrow)$ |  |
| FlexPepDock    | 6.43                                            | 7.52                                    | 0.393             | -                                                 | -                                       | -                 |  |
| AlphaFold 2    | 8.49                                            | 9.20                                    | 0.355             | -                                                 | -                                       | -                 |  |
| dyMEAN         | 7.96                                            | 8.35                                    | 0.374             | 17.64                                             | 17.56                                   | 0.142             |  |
| HSRN           | 6.02                                            | 7.59                                    | 0.508             | 9.28                                              | 9.72                                    | 0.394             |  |
| DiffAb         | 4.23                                            | 7.60                                    | 0.586             | 13.96                                             | 13.12                                   | 0.236             |  |
| PepGLAD (ours) | 4.09                                            | 5.30                                    | 0.592             | 8.87                                              | 8.62                                    | 0.403             |  |

20

RMSD(CA)

10

0

30

40

RMSD<sub>atom</sub>=2.96Å

DockQ =0.846



#### **Ablation Study**

#### Significance:

Affine Transformation > Full-Atom Modeling > Masked Autoencoder > Protein

**Fragments Training** 

| Ablations     | Div.(†) | Con.(†) | $\Delta G(\downarrow)$ | Success | Avg.  |
|---------------|---------|---------|------------------------|---------|-------|
| PepGLAD       | 0.506   | 0.789   | -21.94                 | 55.97%  | 0.619 |
| w/o Full-Atom | 0.441   | 0.751   | -20.87                 | 51.18%  | 0.574 |
| w/o Affine    | 0.450   | 0.740   | -19.08                 | 52.39%  | 0.564 |
| w/o ProtFrag  | 0.535   | 0.760   | -20.16                 | 52.15%  | 0.597 |
| w/o Mask      | 0.422   | 0.741   | -20.45                 | 57.44%  | 0.579 |



- > PepGLAD: full-atom model for peptide design given the binding site on the target protein
- We curate PepBench with carefully selected test complexes and split criterion to test the generalization ability across different target proteins
- We curate ProtFrag of 70K peptide-like fragments for data augmentation, which may facilitate future research on peptide design
- PepGLAD surpasses state-of-the-art models in terms of sequence-structure co-design and binding conformation generation



# Thank you for your attention!





**Code Link** 

Full-Atom Peptide Design with Geometric Latent Diffusion (NeurIPS 2024)