

User Satisfaction and Creator Productivity Trade-Offs

Fan Yao Department of Computer Science University of Virginia

Acknowledgement

Yiming Liao (Meta)

Jingzhou Liu (Meta)

Shaoliang Nie (Meta) Qifan Wang (Meta)

Haifeng Xu (Uchicago)

Hongning Wang (UVa, Tsinghua)

Game-theoretic modeling of content creation dynamics

YouTube

- Information Retrieval games [Ben-Porat et al., 2019, Madmon et al., 2024]
- Exposure games [Hron et al., 2023, Jagadeesan et al., 2023]
- Content Creator Competition (C³) games [Yao et al., 2023, 2024]
- Our framework:
 - Cournot C^3 (C^4) games
 - Extended from C³
 - Echoes Cournot Competition [Cournot, 1838]

I'm aware of and commit to my niche.
 what content I should produce?
 How much time/effort I should spend?

Cournot Competing Content Creation (C⁴) Game

- Basic components: *n* creators, a population of users $U = \{u_j \in \mathbb{R}^d\}_{j=1}^m$ and a platform with a relevance measurement $w_{ij} \in [0, 1]$
- Each creator chooses production quantity x_i
- Platform allocate traffic to each piece of content based on softmax rule from relevance measures, using personalized exploration strengths
- Creators' payoffs: the receive traffic minus the production cost

Creators' payoff functions

• Expected payoff = traffic - cost:

- The platform controls the personalized exploration strength $\beta = (\beta_1, \cdots, \beta_m)$
- Each creator optimizes her payoff with gradient-based dynamics

Stability of C⁴

Theorem 1 [Informal] Pure Nash equilibrium (PNE) exists in any C⁴ with convex costs, and gradient ascent dynamics converge to the unique PNE.

- When costs are convex, creator-i's payoff function is concave in creatori's strategy and convex in other creators' strategies
- With these properties, we can verify C⁴ is a strict monotone game [Rosen, 1965] and thus has a unique PNE $x^* = (x_1^*, \cdots, x_n^*)$
- This allows us to further investigate the properties of PNE $oldsymbol{x}^*(oldsymbol{eta})$

User satisfaction and creator productivity

Definition. The user satisfaction metric under the exploration policy is Q = (Q + Q + Q)

$$oldsymbol{eta}=(eta_1,\cdots,eta_m)$$
 is given by

$$U(oldsymbol{x}^*(oldsymbol{eta});oldsymbol{eta}) = \sum_{j=1}^m \sum_{i=1}^n \left(rac{w_{ij} x_i^* e^{eta_j w_{ij}}}{\sum_{k=1}^n x_k^* e^{eta_j w_{kj}}}
ight),$$

and the total content creation volume is given by

$$V(\boldsymbol{x}^*(\boldsymbol{eta})) = \sum_{i=1}^n x_i^*.$$

 The user satisfaction U is usually considered as a short-term evaluation metric, while the total content creation volume V concerns the longterm content supply

Tradeoff between U and V

Theorem 2 When the user population is homogeneous, *U* is increasing in β and *V* is decreasing in β .

- Reveals an intrinsic tradeoff between user engagement and creator engagement in content recommendation platforms!
- Empirically, we can verify such observation holds for general user population as well.

Optimize a hybrid social welfare

- In practice, the platform usually needs to balance the short-term and long-term goal
- This can be achieved by optimizing a linear combination of U and V

 $W_{\lambda}(\boldsymbol{x}^{*}(\boldsymbol{\beta});\boldsymbol{\beta}) = U(\boldsymbol{x}^{*}(\boldsymbol{\beta});\boldsymbol{\beta}) + \lambda V(\boldsymbol{x}^{*}(\boldsymbol{\beta});\boldsymbol{\beta}).$

• To optimize W, the platform needs to solve

 $\begin{array}{ll} \text{Find} & \arg\max_{\boldsymbol{\beta}\in\mathbb{R}^m_{\geq 0}} W_{\lambda}(\boldsymbol{x}^*(\boldsymbol{\beta}),\boldsymbol{\beta})\\ s.t. & \boldsymbol{x}^*(\boldsymbol{\beta}) \text{ is the PNE of } \mathcal{G}. \end{array}$

 We can derive the gradient of W w.r.t. β using chain rules and implicit function theorem!

Please check out our paper for more details!

Theoretical result