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- Posterior Estimation

e Simulation-based inference (SBI) allow us to infer the
hidden parameters of complex systems by means of
simulation.

e The goal of amortized posterior estimation is to ef-
ficiently approximate the full posterior distribution
p(0|x) over parameters 0 for any observable x.

Motivation

e Multi-step models (e.g., diffusion models, flow match-
ing) are flexible, but slow.

e One-step models (e.g., normalizing flows) are con-
strained by invertible architectures, but fast.

e Consistency models are both unconstrained and fast.

Method

e Explore Consistency Training to train neural posterior
estimators from scratch
e Compare four methods: Affine Coupling Flows (ACF),
Neural Spline Flows (NSF), Flow Matching Posterior Es-
timation (FMPE), and Consistency Model Posterior Es-
timation (CMPE; Ours)
Consistency Function: Ensure that for t = 0, function is
the identity: 14(0, t; x) = Cskip(£)0 + Cout(t) Fe(0, t; X)
Optimization Objective:
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where A(t) is a weighting function and z ~ N (0, I).
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Consistency Models Enable Fast

Posterior Approximation with

Unconstrained Architectures.
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Experiments

Three low-dimensional benchmarks: The tasks feature
multi-modal distributions. See the center figure (bottom)
for examples with sampling durations. Below on the left,
we provide performance on the two moons benchmark
as a function of the training budget for different methods.
K+ indicates K sampling steps. For C2ST, lower is better.
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Bayesian denoising: Denoising Fashion MNIST shows
that CMPE is able to handle higher-dimensional problems
as well. For the figure below, we used a U-Net architec-
ture and 60 000 training images.
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Tumor spheroid growth: A multi-scale hybrid discrete-
continuum model describing the growth of a 2D tumor
spheroid. The plot below shows bivariate posteriors for
two parameters.
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Limitations

e No closed-form likelihood computation possible.

e Non-monotonic relationship between compute and
sample quality.

e Slightly increased training time ( 25%).
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