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• Simulation-based inference (SBI) allow us to infer the
hidden parameters of complex systems by means of
simulation.

• The goal of amortized posterior estimation is to ef-
ficiently approximate the full posterior distribution
p(θ|x) over parameters θ for any observable x .

Motivation
•Multi-step models (e.g., diffusion models, flow match-
ing) are flexible, but slow.

• One-step models (e.g., normalizing flows) are con-
strained by invertible architectures, but fast.

• Consistency models are both unconstrained and fast.
Method
• Explore Consistency Training to train neural posterior
estimators from scratch

• Compare four methods: Affine Coupling Flows (ACF),
Neural Spline Flows (NSF), FlowMatching Posterior Es-
timation (FMPE), and Consistency Model Posterior Es-
timation (CMPE; Ours)

Consistency Function: Ensure that for t = 0, function is
the identity: fφ(θ, t; x) = cskip(t)θ + cout(t)Fφ(θ, t; x)
Optimization Objective:
E
[
λ(ti) ∥fφ(θ + ti+1z, ti+1; x)− fφ−(θ + tiz, ti ; x)︸ ︷︷ ︸

stop_gradient

∥
]
,

where λ(t) is a weighting function and z ∼ N (0, I).

Consistency Models Enable Fast
Posterior Approximation with
Unconstrained Architectures.
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Experiments
Three low-dimensional benchmarks: The tasks feature
multi-modal distributions. See the center figure (bottom)
for examples with sampling durations. Below on the left,
we provide performance on the two moons benchmark
as a function of the training budget for different methods.
K# indicatesK sampling steps. For C2ST, lower is better.
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Bayesian denoising: Denoising Fashion MNIST shows
that CMPE is able to handle higher-dimensional problems
as well. For the figure below, we used a U-Net architec-
ture and 60 000 training images.

Parameter 
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Observation x

Mean

Std.Dev

Tumor spheroid growth: A multi-scale hybrid discrete-
continuum model describing the growth of a 2D tumor
spheroid. The plot below shows bivariate posteriors for
two parameters.
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Limitations
• No closed-form likelihood computation possible.
• Non-monotonic relationship between compute and
sample quality.

• Slightly increased training time ( 25%).


