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Kernel Ridge Regression (KRR)
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Figure: The test error decreases with sample size n at a certain rate.
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Learning Curve (in number of samples)



Assumption (IF - independent features) The random feature vector
has independent sub-Gaussian entries.
Assumption (GF - generic features) The random feature vector has
entries which exhibit some concentration results. Kernels which feature
vectors satisfies Assumption (GF):

1 dot-product kernels on hyperspheres;

2 kernels with bounded eigenfunctions;

3 radial base function (RBF) and shift-invariant kernels;

4 kernels on hypercubes.

Assumption (PE - polynomial decay)
λk = Θk

(
k−(1+a)

)
, θ∗k = Θk (k

−r ) for some constants a, r > 0. Source

coefficient s = 2r+a
1+a . Ridge λ = Θn

(
n−b

)
.

Assumption (EE - exponential decay)
λk = Θk

(
e−ak

)
, θ∗k = Θk

(
e−kr

)
for some constants a, r > 0. Source

coefficient s = 2r
a + 1. Ridge λ = Θn

(
e−bn

)
.
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Possible Settings



test error =

B︷︸︸︷
bias +

V︷ ︸︸ ︷
variance .

Ridge strong weak
Feature (IF) (GF) (IF) (GF)

(PE)
B Θ

(
n−bs̃

)
O

(
n−bs̃

)
Θ
(
n−(1+a)s̃

)
A novel bound

V Θ
(
σ2n−1+ b

a+1

)
O

(
σ2n−1+ b

a+1

)
Θ
(
σ2

)
Õ

(
σ2n2a

)
(EE)

B Θ
(
e−bs̃n

)
O

(
e−bs̃n

)
O

(
e−as̃n

)
, s > 1 O

(
e−as̃n

)
, s > 1

V Θ
(
σ2n−1+ b

a

)
O

(
σ2n−1+ b

a

)
catastrophic overfitting

Table: KRR Learning curve: n is the sample size, a, r > 0 define the
eigen-decay rates of the kernel and target function, b > 0 controls the decay

rate of the ridge regularization parameter , σ2 def.
= E

[
ϵ2
]
is the noise level and

source coefficient s defined in Assumptions (PE) and (EE). Here

s̃
def.
= min{s, 2}. Results in blue indicate either previously unstudied regimes or

improvements in available rates in a studied regime.
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(Partial) Result



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
a

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

r (n (2r + a))

(1)
(n (r a))

(n 2(1 + a))

s<1 s<1

1<s<2

s>2

Our result on 

r = a
2r = 2 + a
r = 1

2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
a

(1)

(n (r a))

(n (2 a))
Previous result on 

r = a
2r = 2 + a

Figure: Phase diagram of the bound of the bias term B under weak ridge and
polynomial eigen-decay. Our result is on the left, which improves over previous
result from [1] on the right. On the left plot, the range of the source coefficient
s = 2r+a

1+a
is shown in gray font in each colored region.
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A Novel Bound on the Bias term



Figure: It is well known that kernels with exponential eigen-decay suffers from
catastrophic overfitting.
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Catastrophic Overfitting with (EE)
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Figure: Kernels with polynomial eigen-decay fitting pure noise on unit
2-disk. (left): Neural tangent kernel (with 1 hidden layer) exhibits catastrophic
overfitting. (right): Laplacian exhibits tempered overfitting.
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Catastrophic/tempered Overfitting with (PE)



Previous literature [2]–[4] replace feature vectors by Gaussian random
vectors to obtain KRR learning curve, which agree with the empirical
results. This phenomenon is called GEP.

When and why does the Gaussian Equivalence Property (GEP) exist?
we provide the same non-asymptotic bounds for both cases under
a strong ridge. However, GEP does not hold under weak ridge!
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Gaussian Equivalence Property (GEP)



Ridge strong weak
Feature (IF) (GF) (IF) (GF)

(PE) or (EE)
B ✓ ✓ ✓ ✓ (when 1 ≤ s ≤ 2)
V ✓ unknown ✓ × see Figure 4

Table: The table shows whether the lower bound is matching the upper bound
deduced in this paper.
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Matching Lower Bound



Using results from [1], [5]:

B ≤
(
1 + ρ2ζ2ξ−1 + ρ

δ

)
∥θ∗

>k∥2Σ>k
+ (ζ2ξ−2 + ρζ2ξ−1)

s1(Ak)
2

n2
∥∥θ∗

≤k

∥∥2
Σ−1

≤k

V/σ2 ≤ ρ2
(
ζ2ξ−1 k

n
+

Tr[Z>kΣ
2
>kZ

⊤
>k ]

nTr[Σ2
>k ]

rk(Σ)2

nRk(Σ)

)

the “probably constant” part: random matrix theory

the “decay” part: simple calculus
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Master Inequalities



Let x ∈ Rp be the random feature vector with covariance Σ = E
[
xx⊤

]
.

Let z = Σ−1/2x be the whitened feature. Assumption (GF): for all
k ∈ N, assume that

αk
def.
= ess inf

z

∥z>k∥2Σ>k

Tr[Σ>k ]
= Θk (1) ,

βk
def.
= ess sup

z
max

∥z≤k∥22
k

,
∥z>k∥2Σ>k

Tr[Σ>k ]
,
∥z>k∥2Σ2

>k

Tr[Σ2
>k ]

 = Θk (1) .

Reason: Ez

[
∥z≤k∥2

2

k

]
= Ez

[
∥z>k∥2

Σ>k

Tr[Σ>k ]

]
= Ez

[
∥z>k∥2

Σ2
>k

Tr[Σ2
>k ]

]
= 1.
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Generic Feature



Let X ∈ Rn×p be the input block. Recall the ridge regressor:

θ̂ = X⊤(XX⊤ + nλIn︸ ︷︷ ︸
A

)−1y ∈ Rp

Write X = (X≤k |X>k) and

A = X≤kX
⊤
≤k︸ ︷︷ ︸

fit target

+

Ak︷ ︸︸ ︷
X>kX

⊤
>k︸ ︷︷ ︸

implicit reg.

+ nλIn︸︷︷︸
explicit reg.
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Implicit Regularization



Master inequalities:

B ≤
(
1 + ρ2ζ2ξ−1 + ρ

δ

)
∥θ∗

>k∥2Σ>k
+ (ζ2ξ−2 + ρζ2ξ−1)

s1(Ak)
2

n2
∥∥θ∗

≤k

∥∥2
Σ−1

≤k

V/σ2 ≤ ρ2
(
ζ2ξ−1 k

n
+

Tr[Z>kΣ
2
>kZ

⊤
>k ]

nTr[Σ2
>k ]

rk(Σ)2

nRk(Σ)

)
Concentration Coefficients:

ξn,k
def.
=

s1(Z⊤
≤kZ≤k)

n
; ζn,k

def.
=

s1(Z⊤
≤kZ≤k)

sk(Z⊤
≤kZ≤k)

; ρn,k
def.
=

n ∥Σ>k∥op + s1(Ak)

sn(Ak)

where Z≤k
def.
= X≤kΣ

−1/2
≤k ∈ Rn×k .
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Concentration Coefficients



Let k ∈ N be an integer. Recall that ξn,k
def.
=

s1(Z
⊤
≤kZ≤k )

n . If Assumption
(GF) (or resp. (IF)) holds, then with probability at least
1− 2 exp(− 1

2β2
k
n) (or resp. 1− 2 exp (−c1kn)), it holds that

ξn,k ≥ 1

2
.

Proof:
Since the largest singular value is larger than the average of the singular
values,

ξn,k
def.
=

s1(Z⊤
≤kZ≤k)

n
≥

1
k Tr[Z

⊤
≤kZ≤k ]

n
=

Tr[Z⊤
≤kZ≤k ]

kn
.
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Concentration Coefficients



If Assumption (GF) holds, then

Tr[Z⊤
≤kZ≤k ] = Tr[Z≤kZ

⊤
≤k ] =

n∑
i=1

∥(zi )≤k∥22 ≤ βkkn.

Set M = βkk and by Hoeffding’s inequality, the above trace concentrates:

P
(∣∣Tr[Z≤kZ

⊤
≤k ]− kn

∣∣ ≥ t
)
≤ 2 exp (− 2t2

nM2
)

Set t = nk/2 to conclude the statement.
Analogously, if Assumption (IF) holds, for i = 1, ..., n and l = 1, ..., k,

(z
(l)
i )2 − 1 is centered sub-exponential variable with sub-exponential norm∥∥∥(z (l)i )2 − 1

∥∥∥
ψ1

≲ G 2. With probability at least 1− 2 exp (−c1kn),

∣∣Tr[Z⊤
≤kZ≤k ]− kn

∣∣ = ∣∣∣∣∣
n∑

i=1

k∑
l=1

(z
(l)
i )2 − kn

∣∣∣∣∣ ≤ 1

2
kn.
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Concentration Coefficients
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