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Graph Anomaly Detection (GAD)

To detect the abnormal nodes that 

are different from the majority. 



GAD’s Application: Social Networks
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GAD’s Application: Cybersecurity
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GAD’s Application: Traffic Networks

Traffic sensors displayed on GoogleMaps
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GAD: Existing Solutions 

Mainstream solution: Graph neural networks (GNNs)
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GAD: Existing Solutions 

Graph neural networks 

(GNNs) based methods
Supervised GAD methods:

Unsupervised GAD methods

CARE-GNN[1] GHRN[2]

training GAD model with labels (normal/anomaly)

[1] Dou, Yingtong, et al. "Enhancing graph neural network-based fraud detectors against camouflaged fraudsters." Proceedings of the 29th ACM international conference 

on information & knowledge management. 2020.
[2] Gao, Yuan, et al. "Addressing heterophily in graph anomaly detection: A perspective of graph spectrum." Proceedings of the ACM Web Conference 2023. 2023.



GAD: Existing Solutions 

Graph neural networks 

(GNNs) based methods
Supervised GAD methods:

Unsupervised GAD methods:

DOMINANT[3] CoLA[4]

training GAD model with labels (normal/anomaly)

[3] Ding, Kaize, et al. "Deep anomaly detection on attributed networks." Proceedings of the 2019 SIAM international conference on data mining. Society for Industrial and Applied Mathematics, 2019.
[4] Liu, Yixin, et al. "Anomaly detection on attributed networks via contrastive self-supervised learning." IEEE transactions on neural networks and learning systems 33.6 (2021): 2378-2392.

training GAD model without labels
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Can’t be transferred to new datasets!

Can we develop a one-for-all GAD model that can be trained 
once and effectively applied across various datasets?



Generalist GAD: a New Paradigm

Generalist

GAD Model
Train

Train

Train

…

GAD

Model

Training Stage Inference Stage…
Training on multiple datasets Directly inference on various datasets 

without re-training or fine-tuning

The “foundation model” of GAD!
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Generalist GAD: a New Paradigm

Generalist

GAD Model
Train

Train

Train

…

GAD

Model

Training Stage Inference Stage…

Training on multiple datasets

Directly inference on various datasets

Ours “generalist GAD” paradigm

✅ No fine-tuning 

→ low application costs

✅ Only need few-shot normal

→ low data requirement

✅ Great generalizability

→ one-for-all model

How to design a generalist GAD model?



The proposed generalist GAD method - ARC
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The proposed generalist GAD method - ARC

Step 1: Smoothness-Based Feature Alignment

• Feature projection
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The proposed generalist GAD method - ARC

Step 1: Smoothness-Based Feature Alignment

• Feature projection

• Smoothness-based feature sorting … …

Feature 
Projection

Smoothness-
Based

Feature 
Sorting

Linear projection – PCA

Reorder the projected features according to s

Motivation:

The contributions of 

features with low/high 

smoothness are similar 

across datasets! 
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The proposed generalist GAD method - ARC

Step 2: Ego-Neighbor Residual Graph Encoder

• Propagation

• Transformation

• Residual operation

• Concatenation

Prop.
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Motivation:

• Residual → Local Affinity[5]

• Residual → Heterophily  

and High-Frequency Signals

[5] Qiao, Hezhe, and Guansong Pang. "Truncated affinity maximization: One-class homophily modeling for graph anomaly detection." Advances in Neural Information Processing Systems 36 (2023).



The proposed generalist GAD method - ARC

Step 3: Cross-Attentive In-Context Anomaly Scoring 

• Cross-attention
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Query: unlabelled nodes 𝐇𝑞

Training objective: Reconstruct 𝐇𝑞 with 𝐇𝑘

𝐖𝑘

0.82
0.30
0.28
0.23
0.21

𝐇𝑘

𝐇𝑞

𝐖𝑞𝐊

𝐐

෩𝐇𝑞



The proposed generalist GAD method - ARC

Step 3: Cross-Attentive In-Context Anomaly Scoring 

• Cross-attention

Key: labelled normal nodes 𝐇𝑘

Query: unlabelled nodes 𝐇𝑞

• Anomaly scoring

Reconstruction errors as anomaly scores

𝐖𝑘

0.82
0.30
0.28
0.23
0.21

𝐇𝑘

𝐇𝑞

𝐖𝑞𝐊

𝐐

෩𝐇𝑞



The proposed generalist GAD method - ARC

Step 3: Cross-Attentive In-Context Anomaly Scoring 

• Cross-attention

Key: labelled normal nodes 𝐇𝑘

Query: unlabelled nodes 𝐇𝑞

• Anomaly scoring

Reconstruction errors as anomaly scores

Motivation:

normal query nodes can 

be easily reconstructed 

by the key nodes (other 

normal nodes)

𝐖𝑘
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Experiments: Settings

• 4 groups of datasets

• the largest dataset → training datasets; the rest → testing datasets



Experiments: Main Results

🎯 Strong detection capability without fine-tuning  

🌍 Generalizability in different datasets/domains 



Experiments: Sensitivity In Terms of #shots 

✨ Works well with extremely few shots

📈 More labelled normal samples bring better performance



Experiments: Ablation Study

♻️ Each component has a significant 

contribution to the final performance



Experiments: Efficiency Analysis

🕙 High inference efficiency – comparable to GCN



Experiments: Visualization

🤔 Interpretability – attention score

Case 1: uniform attention weights

→ “Single-class normal ”: Reconstructed 

embeddings that closely to the average 

embedding of the context nodes

Case 2: two fixed patterns for normal queries

→ “Multi-class normal”: Two cluster centers



Summary

New paradigm: generalist GAD: one model for all datasets!

Effective solution: ARC – a simple yet effective methods

Extensive experiments: ARC enjoys superior performance, great 
generalizability, high running efficiency, and potential explainability

Full paper GitHub



Thanks for your listening!


