

LM-HT SNN: Enhancing the Performance of SNN to ANN Counterpart through Learnable Multi-hierarchical Threshold Model

Zecheng Hao¹, Xinyu Shi^{1,2}, Yujia Liu¹, Zhaofei Yu^{1,2}* & Tiejun Huang^{1,2} ¹ School of Computer Science, Peking University ² Institute for Artificial Intelligence, Peking University

From Single-threshold to Multi-threshold Model

• We point out that the essence of the **equidistant multi-threshold** model is to simulate the spike firing situation of the vanilla spiking model within **specific time windows**. Specially, when the input current follows a completely uniform distribution on the time dimension, its spike firing rate is mathematically equivalent to the activation output of **quantized ANNs**.

Learnable Multi-hierarchical Threshold Model

- Under the condition that the input current completely follows a uniform distribution, the spike firing rate of the L-level multi-threshold model within T time-steps is equivalent to the LT-level quantized ANN.
- In the initial state of hybrid training, from the perspective of mathematical expectation, the spike firing rate corresponding to STBP fine-tuning training with any number of time-steps is equivalent to the spike firing rate corresponding to ANN with any quantization level.

Theorem 4.2. When $\lambda^{l} = 1, \mathbf{v}^{l}(0) \in [0, \theta^{l})$, for a *M*-HT model with *L*-level threshold, after *T* time-steps, we will derive the following conclusions: (i) If we further assume $\forall t \in [1,T], \mathbf{I}^{l}(t) \in [0, L\theta^{l})$, we will have: $\forall t \in [1,T], \mathbf{s}^{l}(t) = \sum_{j=L(t-1)+1}^{Lt} \mathbf{s}_{IF}^{l}(j), \mathbf{v}^{l}(t) = \mathbf{v}_{IF}^{l}(Lt), \sum_{t=1}^{T} \mathbf{s}^{l}(t) = \sum_{j=1}^{LT} \mathbf{s}_{IF}^{l}(j).$ (ii) If we further assume $\mathbf{I}^{l}(1) = \dots = \mathbf{I}^{l}(T)$, we will have: $\sum_{t=1}^{T} \mathbf{s}^{l}(t) = clip\left(\left\lfloor \frac{\mathbf{v}^{l}(0) + \sum_{t=1}^{T} \mathbf{I}^{l}(t)}{\theta^{l}} \right\rfloor, 0, LT\right).$ Here the IF model has uniform input currents $\mathbf{I}^{l}(1)/L, \dots, \mathbf{I}^{l}(T)/L$ respectively within every L steps

and satisfies $\boldsymbol{v}_{IF}^l(0) = \boldsymbol{v}^l(0)$.

Theorem 4.4. When $\sum_{t=1}^{T} \mathbf{I}^{l}(t)/LT = \mathbf{W}^{l} \mathbf{r}_{lF}^{l-1}(T_{q})$ and $\sum_{t=1}^{T} \mathbf{I}^{l}(t) \in [0, LT\theta^{l}]$, if $\forall i, j \in [1, T], \omega_{ij}^{l} = \frac{1}{T}$ and $\lambda^{l} = 1, \theta^{l} = \vartheta^{l}, \mathbf{v}^{l}(0) = \frac{\theta^{l}}{2}$, for L, T, T_{q} with arbitrary values, we have: $\mathbb{E}\left(\frac{\sum_{t=1}^{T} \mathbf{s}^{l}(t)\theta^{l}}{LT} - \frac{\vartheta^{l}}{T_{q}}clip\left(\left\lfloor\frac{\mathbf{W}^{l}\mathbf{r}_{lF}^{l-1}(T_{q})T_{q}}{\vartheta^{l}} + \frac{1}{2}\right\rfloor, 0, T_{q}\right)\right) = 0.$

思想自由 兼容并包

Learnable Multi-hierarchical Threshold Model

- By adopting different parameter initialization schemes, the LM-HT model can further establish a bridge between the vanilla STBP and quantized ANNs training.
- A brand-new hybrid training framework: ANN-SNN Conversion + STBP training based on LM-HT model (no more than 30 epochs)

Reparameterization Process for LM-HT Model

Experiments

E.(mJ)

0.23

0.46

0.23 0.46

Table 1: Ablation	study for	the LM-HT	model	on a
subset of ImageNe	xt-1k.			

Table 2: Validation for the reparameterization procedure.

Model	T-GIM	Arch.	Acc.(%)	SOPs(G)	E.(mJ)		Arch.	Acc.(%)	SOPs(G)	E.(m
L=1,T=4	w/o		76.22	1.60	1.44	-	Before	reparameter	ization (L=2	, T=2)
L=2,T=2	w/o	ResN-18	80.52	1.08	0.97		VGG-13	61.64	0.26	0.2
L=2,T=2	w/		80.56	0.73	0.66		ResN-18	64.44	0.52	0.4
L=1,T=4	w/o		65.62	3.20	2.88	-	After r	eparameteri	zation (L=1,	T=4)
L=2,T=2	w/o	ResN-34	82.18	2.42	2.18		VGG-13	61.66	0.26	0.2
L=2,T=2	w/		82.72	1.72	1.55		ResN-18	64.50	0.52	0.4

Table 4: The performance of hybrid training based on the LM-HT model for CIFAR-100 dataset.

Method	Time-steps	V	GG-16	ResNet-20		
		ANN Acc.(%)	SNN Acc.(%)	ANN Acc.(%)	SNN Acc.(%)	
RMP [16]	32, 64, 128	71.22	- , - , 63.76	68.72	27.64, 46.91, 57.69	
SNM [43]	32, 64, 128	74.13	71.80, 73.69, 73.95	-	-	
SRP [17]	5, 6, 8	76.28	71.52, 74.31, 75.42	69.94	46.48, 53.96, 59.34	
QCFS $(T_q=4)$ [2]	2, 4, 8	76.11	63.33, 69.70, 74.12	63.90	38.04, 52.28, 61.77	
LM-HT (L=2)	2	-	75.97 (+6.27)	-	63.55 (+11.27)	
	4	-	76.49 (+2.37)	-	64.87 (+3.10)	
LM-HT (L=4)	2	-	76.38 (+2.26)	-	63.43 (+1.66)	
QCFS $(T_q=8)$ [2]	2, 4, 8	77.31	64.85, 70.50, 74.63	69.56	19.76, 34.17, 55.50	
LM-HT (L=2)	2	-	76.31 (+5.81)	-	67.08 (+32.91)	
	4	-	76.79 (+2.16)	-	69.00 (+13.50)	
LM-HT (L=4)	2	-	76.08 (+1.45)	-	67.21 (+11.71)	

Experiments

Table 3: Comparison with previous state-of-the-art works.

Dataset	Method	Туре	Architecture	Time-steps	Accuracy(%)
CIFAR-10	STBP-tdBN [54]	Direct Training	ResNet-19	4	92.92
	Dspike [29]	Direct Training	ResNet-18	4	93.66
	TET [8]	Direct Training	ResNet-19	4	94.44
	SLTT [34]	Online Training	ResNet-18	6	94.44
	GLIF [51]	Direct Training	ResNet-18	2, 4, 6	94.15, 94.67, 94.88
			ResNet-19	2, 4, 6	94.44, 94.85, 95.03
	I M HT (I _ 3)	Direct Training	ResNet-18	2	96.25
	$LM-\Pi I (L=2)$	Direct Training	ResNet-19	2	96.89
	Dspike [29]	Direct Training	ResNet-18	4	73.35
	TET [8]	Direct Training	ResNet-19	4	74.47
	SLTT [34]	Online Training	ResNet-18	6	74.38
CIEAD 100	CL IE [51]	Discot Technics	ResNet-18	2, 4, 6	74.60, 76.42, 77.28
CIFAR-100	OLIF [51]	Direct Training	ResNet-19	2, 4, 6	75.48, 77.05, 77.35
	RMP-Loss [14]	Direct Training	ResNet-19	2, 4, 6	74.66, 78.28, 78.98
	IM HT (I - 2)	Direct Training	ResNet-18	2	79.33
	$LNI-\Pi I (L=2)$	Direct Training	ResNet-19	2	81.76
ImageNet-200	DCT [13]	Hybrid Training	VGG-13	125	56.90
	Online-LTL [48]	Unhaid Taoining	VCC 12	16	54.82
	Offline-LTL [48]	Hybrid Haining	V00-15	16	55.37
	ASGL [44]	Direct Training	VGG-13	4, 8	56.57, 56.81
	LM-HT (L=2)	Direct Training	VCC 12	2, 4	61.09, 61.75
	LM-HT (L=4)	Direct framing	VGG-15	2	62.05
	STBP-tdBN [54]	Direct Training	ResNet-34	6	63.72
	TET [8]	Direct Training	ResNet-34	6	64.79
	MBPN [15]	Direct Training	ResNet-34	4	64.71
ImageNet-1k	RMP-Loss [14]	Direct Training	ResNet-34	4	65.17
	SEW ResNet [11]	Direct Training	ResNet-34	4	67.04
	GLIF [51]	Direct Training	ResNet-34	4	67.52
	LM-HT (L=2)	Direct Training	ResNet-34	2	70.90
CIFAR10-DVS	STBP-tdBN [54]	Direct Training	ResNet-19	10	67.80
	Dspike [29]	Direct Training	ResNet-18	10	75.40
	MBPN [15]	Direct Training	ResNet-19	10	74.40
	RMP-Loss [14]	Direct Training	ResNet-19	10	76.20
	LM-HT (L=2) LM-HT (L=4)	Direct Training	ResNet-18	2, 4 2	80.70, 81.00 81.90

Thanks for Listening!

Zecheng Hao¹, Xinyu Shi^{1,2}, Yujia Liu¹, Zhaofei Yu^{1,2}* & Tiejun Huang^{1,2} ¹ School of Computer Science, Peking University ² Institute for Artificial Intelligence, Peking University