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Background

Background

High-frequency components imbedded in data are essential for many physical
problems, such as medical image reconstruction, seismic wavefield modeling.
Thus, it is imperative to extract them for their solutions.

Standard deep neural networks, which will be called single grade deep
learning (SGDL), suffer from the spectral bias [1] (N. Rahaman, et al., On
the spectral bias of neural networks, PMLR, 2019, p. 5301–5310) :

SGDLs prioritize learning lower-frequency components of a function but
struggle to capture its high-frequency features.

The multi-grade deep learning (MGDL) model, a model recently introduced
in [2] (Y. Xu, Multi-grade deep learning, arXiv preprint arXiv:2302.00150,
Feb. 1, 2023), trains a DNN incrementally, grade by grade, with each grade
learning only a shallow neural network (SNN).
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Background

Figure: Comparison of functions learned by SGDL and MGDL models (yellow) vs. target
function (blue). Top row: SGDL-learned function at training steps 1,000, 10,000,
20,000, and 30,000. Bottom row: MGDL-learned function at grades 1, 2, 3, and 4. Total
training times: 32,402s (SGDL), 27,817s (MGDL).
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Motivation

Motivation

Consider f , with Fourier transform shown in Fig. 2 (Left) and represent f as

f = f1+f2 ◦f1+f3 ◦f2 ◦f1+f4 ◦f3 ◦f2 ◦f1, (Sum− Composition Form) (1)

where the Fourier transforms f̂j , j = 1, 2, 3, 4, are displayed in Fig. 2 (Right).

Figure: Spectrum comparison of f and fj : Amplitude versus one-side frequency plots for
f (Left) and fj for j ∈ N4 (Right).

A high-frequency function can be decomposed as a sum-composition form of
lower-frequency functions.
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Motivation

The real Jacobi–Anger identity, named after the 19th-century, gives

cos(a sin(bx)) =

∞∑
n=−∞

Jn(a) cos(nbx). (2)

where Jn(a) denotes the n-th Bessel function of the first kind.

The left-hand side of (2) is a composition of two low-frequency functions
cos(ax) and sin(bx), having frequencies a/(2π) and b/(2π), respectively,
while the right-hand side is a linear combination of cos(nbx) with n taking all
integers.

Both Sum-Composition Form and the Jacobi–Anger identity suggest:

A high-frequency function can be well approximated by a composition of
several lower-frequency functions.
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Multi-Grade Deep Learning

Multi-Grade Deep Learning

Human education is arranged in grades. In such a system, students learn a
complex subject in grades, by decomposing it into sequential, simpler topics.
Inspired by human learning, the multi-grade deep learning (MGDL) model
was introduced in [2].

MGDL trains a DNN incrementally, grade by grade, each grade training only
a shallow neural network (SNN) using the SNNs trained in the previous
grades as features (“bases”), from the residue of its previous grade.

After all grades are learned, MGDL sums the functions learned in each grade
into a “Sum-Composition Form”.
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Multi-Grade Deep Learning

Figure: Multi-grade network with 3 grades.
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Multi-Grade Deep Learning

Theorem (Xu, 2023) Let D be a compact subset of Rs and L2(D,Rt) denote the
space of t-dimensional vector-valued square integral functions on D. If
f ∈ L2(D,Rt), then for all i = 1, 2, . . .,

f =

i∑
l=1

fl + ei, fl := Nl ◦ Nl−1 ◦ · · · ◦ N1.

where Nl is the SNN learned in grade l, and for i = 1, 2, . . ., either fi+1 = 0 or

∥ei+1∥ < ∥ei∥ .

This theorem shows that the error strictly decreases as a new grade is added.
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Numerical Experiments

Numerical Experiments

Regression on the synthetic data

Approximating the function λ : [0, 1] → R defined by

λ(x) :=

M∑
j=1

αj sin (2πκjx+ φj) , x ∈ [0, 1] (3)

where κ ranges from 0 to 200, φj ∼ U(0, 2π), and amplitudes α are
considered in four cases: constant, decreasing, varying as a function, and
increasing.

Table: Comparison relative mean square error on testing data between SGDL and MGDL

constant decreasing varying increasing
SGDL 1.2× 10−1 5.7× 10−3 1.1× 10−1 7.7× 10−1

MGDL 1.7× 10−5 6.5× 10−6 2.1× 10−5 1.3× 10−3

R. Fang, Y. Xu (ODU) Addressing Spectral Bias by MGDL NeurIPS 2024 9 / 15



Numerical Experiments

Figure: Amplitude versus one-side frequency. Top left: target function frequency. Top
right: MGDL function frequency for grades 1 to 5. Bottom left: overall MGDL function
frequency. Bottom right: SGDL function frequency.
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Numerical Experiments

Regression on the manifold data

Given an injective mapping γ from [0, 1] → R2, a function λ from [0, 1] → R,
we wish to learn a network function τ : R2 → R such that

λ(x) = (τ ◦ γ) (x). (4)

The function τ is not defined on the entire R2 but on the manifold γ([0, 1]).

We choose λ as (3) with an increase amplitude α, and for q = 4, 0, we choose γ as

γq(x) := [1 + sin(2πqx)/2] (cos(2πx), sin(2πx)) , x ∈ [0, 1]. (5)

Figure: Comparison of the loss for learning τ with SGDL and MGDL vs epochs.
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Numerical Experiments

Regression on two-dimensional colored Images

The models take pixel coordinates as input and output corresponding RGB values.

We train the models on a grid of 1/4 of the image pixels and test on the full image.

(a) G 1: 18.62 (b) G 2: 21.50 (c) G 3: 23.42 (d) G 4: 24.32

(e) SGDL: 20.39 (f) Ground Truth (g) SGDL: PSNR (h) MGDL: PSNR
Figure: Comparison of MGDL and SGDL for image sea. (a)-(d): Predictions of MGDL
for grades 1-4 with testing PSNR. (e): Prediction of SGDL with testing PSNR. (f):
Ground truth image. (g)-(h): PSNR for SGDL and MGDL during training process.
Training times: MGDL - 689 seconds, SGDL - 685 seconds.
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Numerical Experiments

(a) G 1: 17.29 (b) G 2: 18.95 (c) G 3: 20.67 (d) G 4: 21.97

(e) SGDL: 19.09 (f) Ground Truth (g) SGDL: PSNR (h) MGDL: PSNR

Figure: Comparison of MGDL and SGDL for image building. (a)-(d): Predictions of
MGDL for grades 1-4 with testing PSNR. (e): Prediction of SGDL with testing PSNR.
(f): Ground truth image. (g)-(h): PSNR for MGDL and MGDL during training process.
Training times: MGDL - 716 seconds, SGDL - 742 seconds.
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Numerical Experiments

(a) G 1: 20.41 (b) G 2: 22.67 (c) G 3: 23.71 (d) G 4: 24.18

(e) SGDL: 21.83 (f) Ground truth (g) SGDL (h) MGDL

Figure: Comparison of MGDL and SGDL for image cat. (a)-(d): Predictions of MGDL
for grades 1-4 with testing PSNR. (e): Prediction of SGDL with testing PSNR. (f):
Ground truth image. (g)-(h): PSNR for SGDL and MGDL during training process.
Training times: MGDL - 138 seconds, SGDL - 77 seconds.

R. Fang, Y. Xu (ODU) Addressing Spectral Bias by MGDL NeurIPS 2024 14 / 15



Conclusion

Conclusion

We propose a novel approach to address the spectral bias issue by
decomposing a function in the sum-composition form, in which the
high-frequency functions are represented as compositions of low-frequency
functions.

We investigate the efficacy of MGDL in decomposing a function of
high-frequency into its “sum-composition” form of SNNs.

We successfully apply the proposed approach to three datasets, showing that
it can effectively address the spectral bias issue.

In future work, we will apply MGDL to real-world problems like medical
image reconstruction, and further investigate the mathematical foundations
behind its ability to address spectral bias.
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Conclusion
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