Addressing Spectral Bias of Deep Neural Networks by Multi-Grade Deep Learning

Ronglong Fang^1 and Yuesheng Xu^1

Department of Mathematics and Statistics, Old Dominion University¹

NeurIPS 2024

Supported by $\sqrt{2\pi}$ and

R. Fang, Y. Xu (ODU) [Addressing Spectral Bias by MGDL](#page-24-0) NeurIPS 2024

Jational Institutes of Health Turning Discovery Into Health

4 ロ ▶ 4 何 ▶ 4

• High-frequency components imbedded in data are essential for many physical problems, such as medical image reconstruction, seismic wavefield modeling. Thus, it is imperative to extract them for their solutions.

∍

 298

- High-frequency components imbedded in data are essential for many physical problems, such as medical image reconstruction, seismic wavefield modeling. Thus, it is imperative to extract them for their solutions.
- Standard deep neural networks, which will be called single grade deep learning (SGDL), suffer from the spectral bias [\[1\]](#page-24-1) (N. Rahaman, et al., On the spectral bias of neural networks, PMLR, 2019, p. 5301–5310) :
	- SGDLs prioritize learning lower-frequency components of a function but struggle to capture its high-frequency features.

 Ω

K ロ ▶ K 御 ▶ K ミ ▶ K 듣

- High-frequency components imbedded in data are essential for many physical problems, such as medical image reconstruction, seismic wavefield modeling. Thus, it is imperative to extract them for their solutions.
- Standard deep neural networks, which will be called single grade deep learning (SGDL), suffer from the spectral bias [\[1\]](#page-24-1) (N. Rahaman, et al., On the spectral bias of neural networks, PMLR, 2019, p. 5301–5310) :
	- SGDLs prioritize learning lower-frequency components of a function but struggle to capture its high-frequency features.
- The multi-grade deep learning (MGDL) model, a model recently introduced in [\[2\]](#page-24-2) (Y. Xu, Multi-grade deep learning, arXiv preprint arXiv:2302.00150, Feb. 1, 2023), trains a DNN **incrementally**, grade by grade, with each grade learning only a shallow neural network (SNN).

∍

メロメメ 御 メメ きょく ミメー

Figure: Comparison of functions learned by SGDL and MGDL models (yellow) vs. target function (blue). Top row: SGDL-learned function at training steps 1,000, 10,000, 20,000, and 30,000. Bottom row: MGDL-learned function at grades 1, 2, 3, and 4. Total training times: 32,402s (SGDL), 27,817s (MGDL).

4 **D** F

Motivation

Consider f, with Fourier transform shown in Fig. [2](#page-5-1) (Left) and represent f as $f = f_1 + f_2 \circ f_1 + f_3 \circ f_2 \circ f_1 + f_4 \circ f_3 \circ f_2 \circ f_1$, $(Sum - Composition Form)$ (1) where the Fourier transforms f_i , $j = 1, 2, 3, 4$ $j = 1, 2, 3, 4$ $j = 1, 2, 3, 4$, are displayed in Fig. 2 (Right).

Figure: Spectrum comparison of f and f_i : Amplitude versus one-side frequency plots for f (Left) and f_i for $j \in \mathbb{N}_4$ (Right).

Motivation

Consider f, with Fourier transform shown in Fig. [2](#page-5-1) (Left) and represent f as $f = f_1 + f_2 \circ f_1 + f_3 \circ f_2 \circ f_1 + f_4 \circ f_3 \circ f_2 \circ f_1$, $(Sum - Composition Form)$ (1) where the Fourier transforms f_i , $j = 1, 2, 3, 4$ $j = 1, 2, 3, 4$ $j = 1, 2, 3, 4$, are displayed in Fig. 2 (Right).

Figure: Spectrum comparison of f and f_i : Amplitude versus one-side frequency plots for f (Left) and f_i for $j \in \mathbb{N}_4$ (Right).

A high-frequency function can be decomposed as a sum-composition form of lower-frequency functions. **4 ロト 4 何 ト 4**

The real Jacobi–Anger identity, named after the 19th-century, gives

$$
\cos(a\sin(b\mathbf{x})) = \sum_{n=-\infty}^{\infty} J_n(a)\cos(n b\mathbf{x}).
$$
 (2)

where $J_n(a)$ denotes the *n*-th Bessel function of the first kind.

• The left-hand side of [\(2\)](#page-7-0) is a composition of two low-frequency functions $cos(a\mathbf{x})$ and $sin(b\mathbf{x})$, having frequencies $a/(2\pi)$ and $b/(2\pi)$, respectively, while the right-hand side is a linear combination of $cos(nbx)$ with n taking all integers.

 Ω

The real Jacobi–Anger identity, named after the 19th-century, gives

$$
\cos(a\sin(b\mathbf{x})) = \sum_{n=-\infty}^{\infty} J_n(a)\cos(n b\mathbf{x}).
$$
 (2)

where $J_n(a)$ denotes the *n*-th Bessel function of the first kind.

• The left-hand side of [\(2\)](#page-7-0) is a composition of two low-frequency functions $\cos(a\mathbf{x})$ and $\sin(b\mathbf{x})$, having frequencies $a/(2\pi)$ and $b/(2\pi)$, respectively, while the right-hand side is a linear combination of $cos(nbx)$ with n taking all integers.

Both Sum-Composition Form and the Jacobi–Anger identity suggest:

A high-frequency function can be well approximated by a composition of several lower-frequency functions.

Multi-Grade Deep Learning

• Human education is arranged in grades. In such a system, students learn a complex subject in grades, by decomposing it into sequential, simpler topics. Inspired by human learning, the multi-grade deep learning (MGDL) model was introduced in [\[2\]](#page-24-2).

 Ω

イロト イ押ト イヨト イヨ

Multi-Grade Deep Learning

- Human education is arranged in grades. In such a system, students learn a complex subject in grades, by decomposing it into sequential, simpler topics. Inspired by human learning, the multi-grade deep learning (MGDL) model was introduced in [\[2\]](#page-24-2).
- MGDL trains a DNN incrementally, grade by grade, each grade training only a shallow neural network (SNN) using the SNNs trained in the previous grades as features ("bases"), from the residue of its previous grade.

 Ω

イロト イ押ト イヨト イヨ

Multi-Grade Deep Learning

- Human education is arranged in grades. In such a system, students learn a complex subject in grades, by decomposing it into sequential, simpler topics. Inspired by human learning, the multi-grade deep learning (MGDL) model was introduced in [\[2\]](#page-24-2).
- MGDL trains a DNN incrementally, grade by grade, each grade training only a shallow neural network (SNN) using the SNNs trained in the previous grades as features ("bases"), from the residue of its previous grade.
- After all grades are learned, MGDL sums the functions learned in each grade into a "Sum-Composition Form".

イロト イ押 トイヨ トイヨト

Figure: Multi-grade network with 3 grades. $\;\; \mathcal{N}_1^*+\mathcal{N}_2^*\circ \mathcal{H}_1^*+\mathcal{N}_3^*\circ \mathcal{H}_2^*\circ \mathcal{H}_1^*$

目

Theorem (Xu, 2023) Let $\mathbb D$ be a compact subset of $\mathbb R^s$ and $L_2(\mathbb D,\mathbb R^t)$ denote the space of *t*-dimensional vector-valued square integral functions on \mathbb{D} . If $\mathbf{f}\in L_2(\mathbb{D},\mathbb{R}^t)$, then for all $i=1,2,\ldots$,

$$
\mathbf{f} = \sum_{l=1}^i \mathbf{f}_l + \mathbf{e}_i, \quad \mathbf{f}_l := \mathcal{N}_l \circ \mathcal{N}_{l-1} \circ \cdots \circ \mathcal{N}_1.
$$

where \mathcal{N}_l is the SNN learned in grade l , and for $i=1,2,\ldots$, either $\mathbf{f}_{i+1}=\mathbf{0}$ or $||\mathbf{e}_{i+1}|| < ||\mathbf{e}_i||$.

This theorem shows that the error strictly decreases as a new grade is added.

 Ω

Numerical Experiments

Regression on the synthetic data

• Approximating the function $\lambda : [0,1] \to \mathbb{R}$ defined by

$$
\lambda(\mathbf{x}) := \sum_{j=1}^{M} \alpha_j \sin(2\pi \kappa_j \mathbf{x} + \varphi_j), \ \mathbf{x} \in [0, 1]
$$
 (3)

where κ ranges from 0 to 200, $\varphi_i \sim \mathcal{U}(0, 2\pi)$, and amplitudes α are considered in four cases: constant, decreasing, varying as a function, and increasing.

Table: Comparison relative mean square error on testing data between SGDL and MGDL

[Numerical Experiments](#page-14-0)

Figure: Amplitude versus one-side frequency. Top left: target function frequency. Top right: MGDL function frequency for grades 1 to 5. Bottom left: overall MGDL function frequency. Bottom right: SGDL function frequency. 299

4日 8

Regression on the manifold data

Given an injective mapping γ from $[0,1] \to \mathbb{R}^2$, a function λ from $[0,1] \to \mathbb{R}$, we wish to learn a network function $\tau:\mathbb{R}^2\to\mathbb{R}$ such that

$$
\lambda(\mathbf{x}) = (\tau \circ \gamma) (\mathbf{x}). \tag{4}
$$

The function τ is not defined on the entire \mathbb{R}^2 but on the manifold $\gamma([0,1]).$

 \bullet We choose λ as [\(3\)](#page-14-1) with an increase amplitude α , and for $q=4,0$, we choose γ as

$$
\gamma_q(\mathbf{x}) := [1 + \sin(2\pi q \mathbf{x})/2] (\cos(2\pi \mathbf{x}), \sin(2\pi \mathbf{x})), \quad \mathbf{x} \in [0, 1].
$$
 (5)

Figure: Comparison of the loss for learning τ with SGDL and MGDL vs epochs.

つへへ

Regression on two-dimensional colored Images

- \bullet The models take pixel coordinates as input and output corresponding RGB values.
- \bullet We train the models on a grid of $1/4$ of the image pixels and test on the full image.

Ground truth image. (g)-(h): PSNR for SGDL and MGDL during training process. Training times: MGDL - 689 seconds, SGDL - 685 seconds.

(ロ) (母) (ヨ) (

[Numerical Experiments](#page-14-0)

Figure: Comparison of MGDL and SGDL for image building. (a)-(d): Predictions of MGDL for grades 1-4 with testing PSNR. (e): Prediction of SGDL with testing PSNR. (f): Ground truth image. (g) -(h): PSNR for MGDL and MGDL during training process. Training times: MGDL - 716 seconds, SGDL - 742 seconds.

 Ω

K ロ ▶ K 何 ▶ K ミ ▶

[Numerical Experiments](#page-14-0)

Figure: Comparison of MGDL and SGDL for image cat. (a)-(d): Predictions of MGDL for grades 1-4 with testing PSNR. (e): Prediction of SGDL with testing PSNR. (f): Ground truth image. (g) - (h) : PSNR for SGDL and MGDL during training process. Training times: MGDL - 138 seconds, SGDL - 77 seconds.

K ロ ▶ K 個 ▶ K ミ ▶ K 듣 ▶

We propose a novel approach to address the spectral bias issue by decomposing a function in the sum-composition form, in which the high-frequency functions are represented as compositions of low-frequency functions.

目

 Ω

K ロ ▶ K 御 ▶ K ミ ▶ K 듣

- We propose a novel approach to address the spectral bias issue by decomposing a function in the sum-composition form, in which the high-frequency functions are represented as compositions of low-frequency functions.
- We investigate the efficacy of MGDL in decomposing a function of high-frequency into its "sum-composition" form of SNNs.

 Ω

イロト イ押ト イヨト イヨ

- We propose a novel approach to address the spectral bias issue by decomposing a function in the sum-composition form, in which the high-frequency functions are represented as compositions of low-frequency functions.
- We investigate the efficacy of MGDL in decomposing a function of high-frequency into its "sum-composition" form of SNNs.
- We successfully apply the proposed approach to three datasets, showing that it can effectively address the spectral bias issue.

 Ω

イロト イ押ト イヨト イヨ

- We propose a novel approach to address the spectral bias issue by decomposing a function in the sum-composition form, in which the high-frequency functions are represented as compositions of low-frequency functions.
- We investigate the efficacy of MGDL in decomposing a function of high-frequency into its "sum-composition" form of SNNs.
- We successfully apply the proposed approach to three datasets, showing that it can effectively address the spectral bias issue.
- In future work, we will apply MGDL to real-world problems like medical image reconstruction, and further investigate the mathematical foundations behind its ability to address spectral bias.

メロトメ 伊 トメ ミトメ ミト

- [1] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y. Bengio, and A. Courville, On the spectral bias of neural networks, in International conference on machine learning, PMLR, 2019, pp. 5301–5310.
- [2] Y. XU, *Multi-grade deep learning*, arXiv preprint arXiv:2302.00150, (Feb. 1, 2023).

 299