Randomized Sparse Matrix Compression for Large-Scale Constrained Optimization in Cancer Radiotherapy

Shima Adeli, **Mojtaba Tefagh**, Gourav Jhanwar, Masoud Zarepisheh

NeurIPS 2024

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Motivation and Problem Statement

- \blacktriangleright Radiotherapy treats over half of all cancer patients and requires solving large-scale constrained optimization problems.
- \triangleright Goal: Optimize radiation beamlet intensities x to achieve desired dose distribution $d = Ax$.
- \blacktriangleright Challenge: The dose influence matrix A is large and dense, making optimization computationally intensive.

Original Problem (A is large and dense)

Minimize $f(Ax, x)$ subject to $g(Ax, x) < 0$

Surrogate Problem (A ≈ **S, S is sparse)**

Minimize $f(Sx, x)$ subject to $g(Sx, x) \leq 0$

KORK EXTERNE PROVIDE

Algorithm and Theoretical Insights

▶ Proposed Randomized Minor-value Rectification (RMR) algorithm which retains significant matrix elements while redistributing smaller values via random sampling.

Feasibility Gap (Theorem 3.6 from main article)

An optimal point of the surrogate problem violates each constraint of the original problem by no more than $(19 + 5 \log m)\epsilon ||x||_2$ with a probability of at least 0.95.

Sub-optimality Gap (Theorem 3.9 from main article)

An optimal point of the surrogate problem is a near-optimal solution to the original problem with a probability of at least 0.95, and the sub-optimality gap $O((19 + 5 \log m) \epsilon \max(||x_A||_2, ||x_S||_2)).$

Experimental Results

- \blacktriangleright Experiments on real-world lung and prostate cancer data.
- **RMR** reduced computational time significantly while maintaining treatment quality.
- \triangleright Achieved 96-98% sparsification with clinically acceptable optimality gaps.
- \triangleright Outperformed existing techniques in preserving treatment quality.

Figure: Comparison of RMR with existing methods for ten lung patients.

KORKARA REPASA DA VOCA

Conclusion

- \triangleright New application: Optimizing radiotherapy treatment planning.
- **I** New algorithm: **RMR** with strong mathematical properties.
- \triangleright Theoretical guarantees ensure minimal impact on optimization constraints and objectives.
- **RMR** provides fast sparsification with accurate approximation, enabling rapid, high-quality treatment planning.

KORKARA REPASA DA VOCA

 \triangleright Potential to improve cancer patient outcomes.

Resources and Code

 \blacktriangleright Code and data:

https://github.com/PortPy-Project/CompressRTP

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →