

SSDM: Scalable Speech Dysfluency Modeling

Jiachen Lian, Xuanru Zhou, Zoe Ezzes, Jet Vonk, Brittany Morin, David Baquirin, Zachary Miller, Maria Luisa Gorno Tempini, Gopala Krishna Anumanchipalli

Speaker: Jiachen Lian

UC Berkekeley, UCSF

University of California San Francisco

National Institutes of Health

Background: Dysfluent speech

Which one is dysfluent speech?

Text: You wish to know all about my grandfather

Speech1 Closer [accented] Speech2 [Uh,] you wish to know all about my grandfather Speech3 [Uh,] you wish to know all about my [Uh], [my] grandfather Speech4 [Uh,] [are you rich in all by] my grandfather [so fast] Speech5 [Uh,] [Y-Y-] You [w-w-w-w]-ish to know all about my [gran-g-g-g-g-g-g]-grandfather [so fast]

Background: Dysfluent speech

Definition

We refer to dysfluent speech as any form of speech characterized by abnormal patterns such as pronunciation error/deficiency, repetition, prolongation, and irregular pauses, etc

Background-Market Values

- Speech Therapy
 - Speech Disorders: Dyslexia, Aphasia, etc
 - Spoken Language Pathologist (SLP)

Market Value: 6.93B \$ by 2023 https://www.fortunebusinessinsights.com/u-s-speech-therapy-market-105574

• Spoken Language Learning

Market Value: 337.2B \$ by 2023 https://techreport.com/statistics/language-learning-market-statistics/

Background: Importance

- → 17.9 million adults and 1.4 percent of children in the U.S. suffer from chronic communication and speech disorders [1]
- → 1 in 14 kids is at risk of developing language disabilities [2]
- → Treatment not affordable by low-income families. [3]
- → Not all hospitals have trained SLPs. Training SLP is expensive. [4]

[1] https://www.nidcd.nih.gov/health/statistics/quick-statistics-voice-speech-language

[2] https://www.nidcd.nih.gov/health/developmental-language-disorder

[3] https://www.trustedhealth.com/blog/speech-language-pathologist-licensure-guide

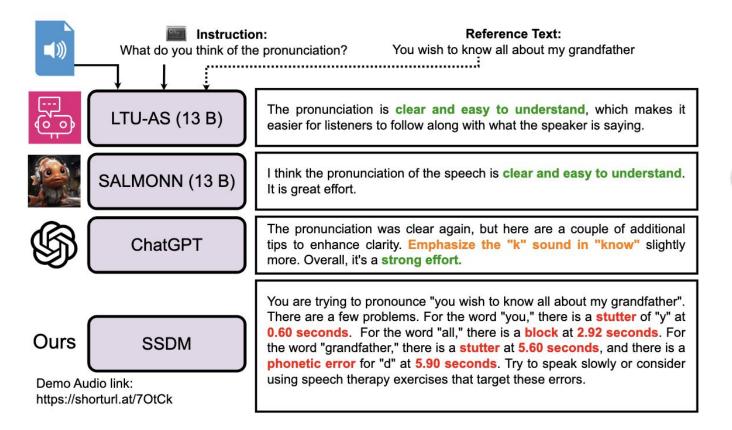
[4] https://dyslexichelp.org/why-doesnt-medical-insurance-cover-dyslexia/

Unfortunately, state-of-the-art speech AI models do not work

Aphasia Speech

What do we want from AI

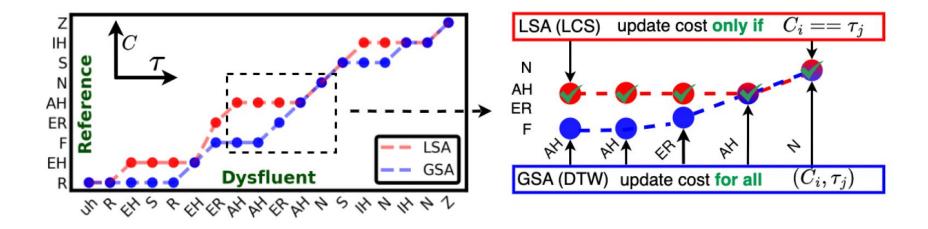
- Reference Text: Giving those who observed him a pronounced feeling of the utmost respect.
- Ground Truth Transcription from SLP


Segment 7: giving <th- th-> those who ob-server [intersegmental pause, addition of /er/] him a [pause] <por- por-> [very distorted] pronounced [distorted] feeling of the [distorted] the utmost respects [sound substitution /ks/ for /t/]

*code said "-ed" was missed but I couldn't tell based on the audio

• Whisper Transcription (best ASR model in the world, from OpenAI [1]) giving those who observe him a pronounced feeling of the utmost respects.

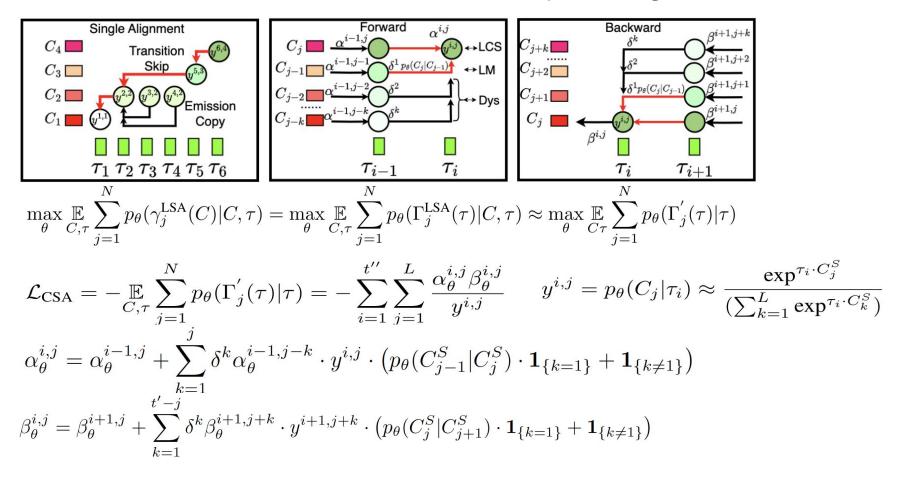
[1] Radford, Alec, et al. "Robust speech recognition via large-scale weak supervision." International Conference on Machine Learning. PMLR, 2023.

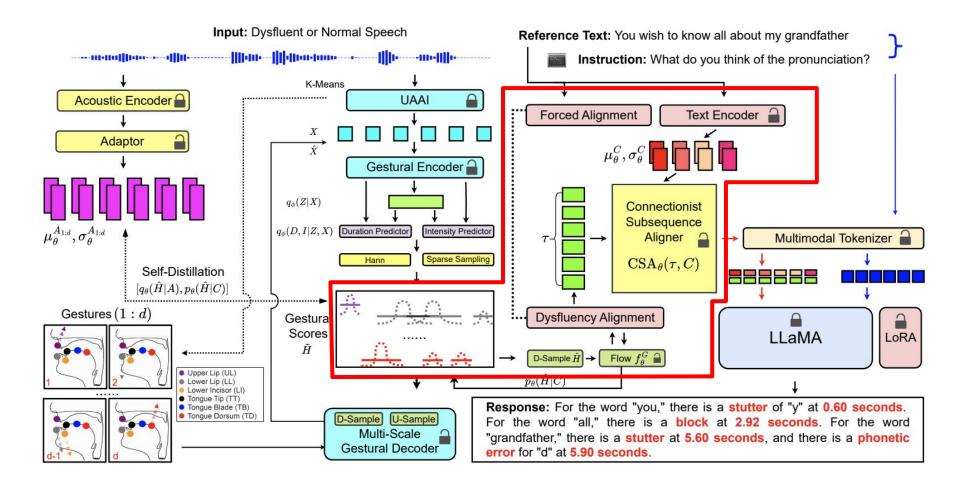

End-to-end Instruction Tuning

•

Towards Dysfluency Modeling

Revisit Monotonic Alignment




LSA: Local Sequence Aligner. E.g. LCS (Longest Common Subsequence) GSA: Global Sequence Aligner. E.g. DTW (Dynamic Time Wraping)

AH: (AH, AH, ER, AH)

Differentiable and Stochastic!

Differentiable and Stochastic Local Sequence Aligner

Neural Gestural Scores are Scalable Speech Representations

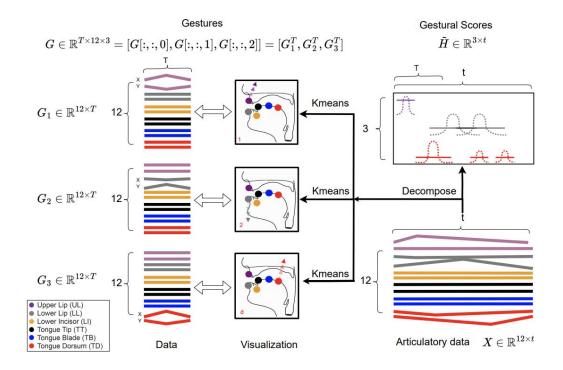
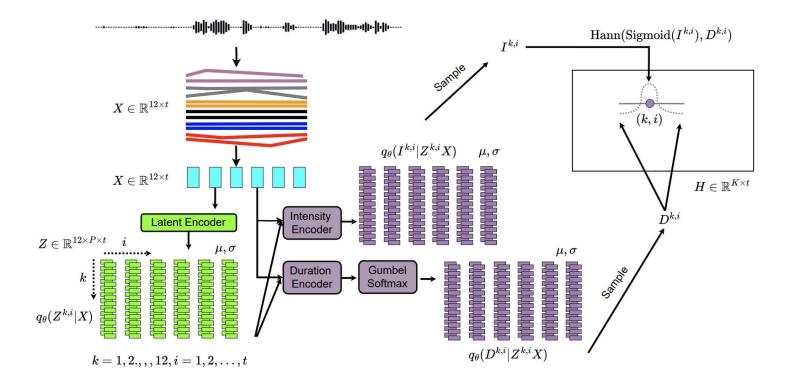
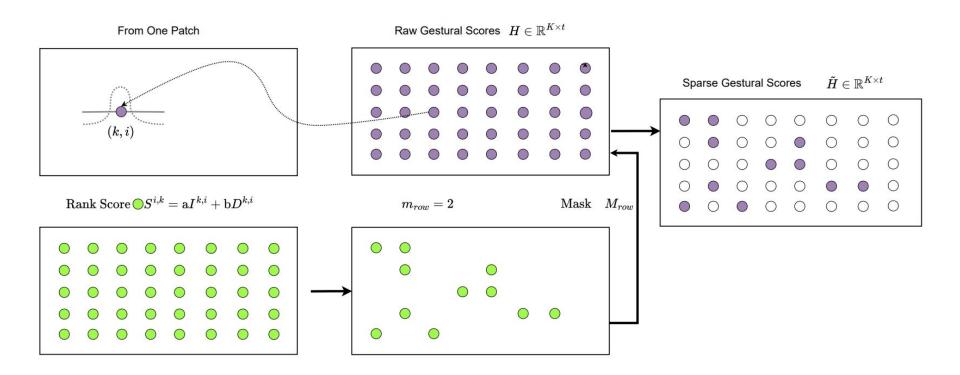
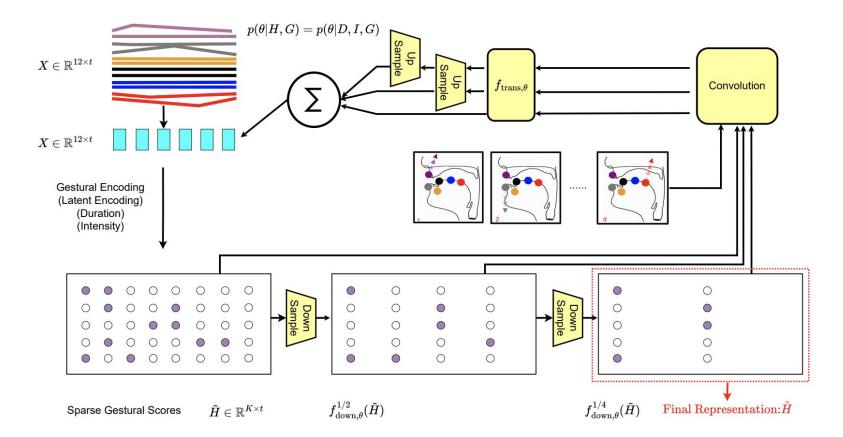
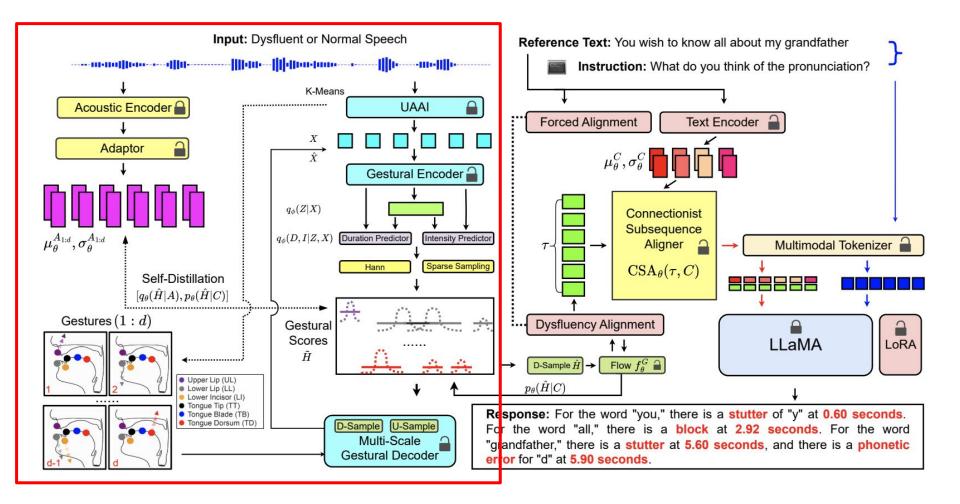
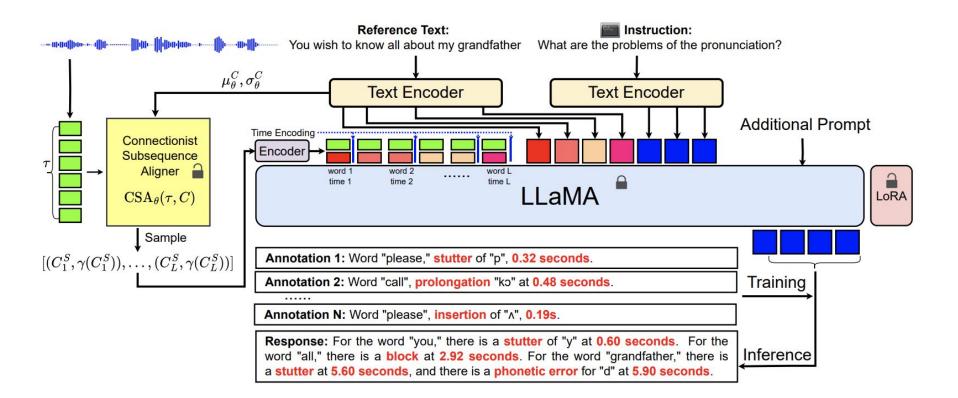




Figure 6: Gestures, Gestural Scores, Raw Data Visualization

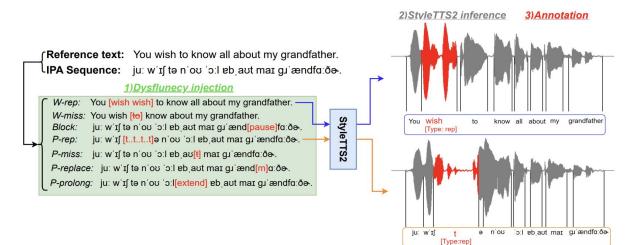

Duration and Intensity Modeling



Sparse Sampling



Reconstruction



Language Models

Where is annotated training data?

Dysfluency	# Samples VCTK++ [1]	Percentage VCTK++	# Samples Libri-Dys	Percentage Libri-Dys	
Prolongation	43738	33.28	288795	13.24	
Block	43959	33.45	345853	15.97	
Replacement	0	0	295082	13.63	
Repetition (Phoneme)	43738	33.28	340916	15.75	
Repetition (Word)	0	0	301834	13.94	
Missing (Phoneme)	0	0	296076	13.68	
Missing (Word)	0	0	296303	13.69	
Total Hours of Audio	130.66		3983.44		

Table 4: Types of Dysfluency Data in VCTK++ and Libri-Dys

Dysfluent Scalability Evaluation:

Method	Eval Data	F1 (%, †)	dPER (%, \downarrow)	F1 (%, ↑)	dPER (%, \downarrow)	F1 (%, ↑)	dPER (%, \downarrow)	F1 (%, ↑)	dPER (%, \downarrow)	F1 (%, ↑)	dPER (%, \downarrow)	SF1 (%, †)	SF2 (%, ↓)
Training Data		VCTK++		LibriTTS (100%)		Libri-Dys (30%)		Libri-Dys (60%)		Libri-Dys (100%)			
HuBERT [108]	VCTK++	90.5	40.3	90.0	40.0	89.8	41.2	91.0	40.2	89.9	41.2	0.15	-0.1
	Libri-Dys	86.2	50.3	88.2	47.4	87.2	42.3	87.2	43.4	87.8	42.9	0.18	0.29
H-UDM [2]	VCTK++	91.2	39.8	91.0	38.8	90.7	39.0	91.3	39.9	90.9	40.2	0.12	0.45
H-UDM [2]	Libri-Dys	88.1	44.5	88.9	45.6	88.0	43.3	88.5	43.3	88.9	43.0	0.32	-0.09
GS-only	VCTK++	88.1	41.9	88.1	42.2	88.3	41.9	88.9	41.9	89.4	40.7	0.39	-0.36
GS-Only	Libri-Dys	84.7	44.5	85.0	43.3	85.5	43.0	85.7	42.2	86.5	41.5	0.32	-0.53
GS w/o dist	VCTK++	91.4	39.0	91.6	38.5	91.5	38.8	92.0	37.2	92.6	37.1	0.38	-0.67
GS W/O dist	Libri-Dys	88.0	42.4	88.3	41.9	88.7	41.0	88.9	39.4	90.0	39.0	0.11	-0.76
GS w/ dist	VCTK++	91.5	39.0	91.7	38.3	91.7	38.6	92.1	37.0	93.0	37.0	0.43	-0.64
	Libri-Dys	88.2	40.9	88.9	40.9	89.0	40.8	89.2	39.0	90.8	39.0	0.56	-0.72

Table 1: Scalable Dysfluent Phonetic Transcription Evaluation

Method	Eval Data	F1 (%, †)	MS (%, †)	F1 (%, ↑)	MS (%, †)	F1 (%, †)	MS (%, †)	F1 (%, ↑)	MS (%, †)	F1 (%, ↑)	MS (%, †)	SF1 (%, ↑)	SF2 (%, ↑)
Training Data		VCTK++		LibriTTS (100%)		Libri-Dys (30%)		Libri-Dys (60%)		Libri-Dys (100%)			
H-UDM [2]	VCTK++	78.3	60.7	82.5	63.9	84.3	66.1	84.2	65.3	84.1	65.2	-0.07	-0.35
	Libri-Dys	74.8	63.9	75.0	62.9	77.2	60.1	75.0	62.3	75.9	61.1	-0.61	0.64
SSDM	VCTK++	84.8	64.3	87.8	68.2	88.5	69.7	89.0	69.9	89.2	70.2	0.26	0.17
	Libri-Dys	78.9	68.3	79.0	69.4	79.3	69.8	80.6	69.9	81.4	70.4	0.76	0.19
w/o LLaMA	VCTK++	84.5	64.0	86.9	68.0	88.4	69.7	88.7	69.8	88.9	69.9	0.18	0.07
W/O LLaWIA	Libri-Dys	78.2	68.1	78.3	69.0	78.8	69.2	79.6	69.3	80.7	70.0	0.65	0.25
w/ DTW	VCTK++	80.3	60.9	83.5	65.9	84.2	66.2	85.0	66.6	85.2	67.2	0.38	0.34
W/DIW	Libri-Dys	75.9	65.6	76.3	67.4	76.7	67.5	77.9	68.2	78.0	68.4	0.51	0.32
w/o GS	VCTK++	84.3	64.1	86.9	65.0	87.4	66.2	87.1	66.3	87.2	66.5	-0.09	0.1
W/0 GS	Libri-Dys	76.9	66.1	77.0	66.4	77.7	67.8	78.6	68.1	78.8	68.4	0.42	0.21
w/ Curri	VCTK++	85.6	65.1	87.1	68.5	88.8	69.9	89.2	70.2	90.0	71.9	0.4	0.63
w/ Curri	Libri-Dys	79.2	68.4	79.4	69.5	79.4	69.9	81.0	70.5	81.6	71.0	0.82	0.39

 Table 2: Scalable Dysfluent Detection Evaluation (Simulation)

State-of-the-art Comparison

Eval Data	a LTU-AS-13B [24]		LTU-AS-13B-FT		SALMONN-13B [27]		SALMONN-13B-FT		ChatGPT [110]		SSDM		SSDM w/ Curri	
-	F1(%, ↑)	MS(%, ↑)	F1(%, ↑)	MS(%, ↑)	F1(%, ↑)	MS(%, ↑)	F1(%, ↑)	MS(%, ↑)	F1(%, †)	MS(%, ↑)	F1(%, ↑)	MS(%, ↑)	F1(%, ↑)	MS(%, ↑)
VCTK++	7.2	0	12.2	1.7	7.3	0	14.2	0.5	25.3	0	89.2	70.2	90.0	71.9
Libri-Dys	8.9	0	9.7	1.7	7.7	0	11.0	2.5	18.3	0	81.4	70.4	81.6	71.0
nfvPPA	0	0	2.4	0	0	0	1.8	0	5.6	0	69.2	54.2	69.9	55.0

Table 3: Detection results from state-of-the-art models.

Conclusions

- Unified Business/Research Platform for language learning/Disordered Speech Diagnosis
- End-to-end and flexible deep speech understanding framework
- Efficient Scaling