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What We Hope in Online Learning?

In online learning framework, a learner is given a policy set and
sequentially interacts with environment. At each round, the learner

▶ Play a policy from the policy set.

▶ Observe the reward(s).

This framework can be instantiated by bandit problems and online
reinforcement learning.

Common Goal. Obtain a good cumulative performance typically
measured by regret or PAC bounds.

How about instantaneous performance?
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What We Hope in Online Learning?
Issue: for high-stakes applications such as medical trials, a good
cumulative performance is not enough. Every policy matters!
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What we hope: good cumulative 
performance & every policy is not too bad

Unstable points

Good cumulative performance,
 but some very bad policies

A natural question arises:

Is there a metric characterizing both cumulative and
instantaneous performance?
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Contributions: a new metric

Definition: uniform last-iterate (ULI)

Let ∆t be the suboptimality gap at round t. An algorithm is ULI, if for a given
δ ∈ (0, 1),

P (∀t ∈ N : ∆t ≤ F (δ, t)) ≥ 1− δ,

where F (δ, t) is polynomial in log(1/δ) and proportional to the product of power

functions of log t and 1/t (e.g., F (δ, t) ≈
√

log t
t ).

By definition, ULI itself characterizes the instantaneous performance.

ULI implies uniform-PAC.

▶ Not only cumulative but also instantaneous performance.

Is ULI optimally achievable by bandit and RL algorithms?
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Achievability in finite-armed bandit problems

For finite arm setting, we show (K is # of arms; ∆ is minimum gap):

Phased elimination (PE) holds ULI with

F (t, δ) ≲ t−
1
2

√
K log (δ−1K log (t)).

An algorithmic lower bound for lil’UCB [Jamieson et al., 2014];

∃t = Ω
(
∆−2

)
such that F (t, δ) ≳ t−

1
4

√
log (δ−1 log (∆−1)).

lil’UCB is uniform-PAC since bonus function is as
√

log logn/n
rather than

√
log log t/n.

Near-opt ULI implies near-opt uniform-PAC, but not the other way
around, i.e., ULI is strictly stronger than uniform-PAC.
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Achievability in infinite-armed linear bandit problems

For compact large arm space (possibly infinite), we propose an
oracle-efficient linear bandit algorithm that holds the ULI.

Starting point: phased elimination [Chapter 22, Bandit Algorithms].

Computational issue of phased elimination (PE):

▶ complexity of G-optimal design scales linearly with arm set.

Key idea: select finite arms to represent all well-behaved active arms.
Then, do G-optimal design on finite arms.

Key technique: Adaptive barycentric spanner, generalize that of
[Awerbuch & Kleinberg, 2008];

▶ Adaptively find proper linear subspace in which active arms span.

▶ call a linearly-constrained optimization oracle poly(d) times.

ULI guarantee: F (δ, t) ≲ t−
1
2

√
d3 log(dt).
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Achievability in online RL

For tabular episodic MDPs, we propose a model-based alg. with ULI
guarantee:

F (δ, t) ≲ t−
1
2 log(δ−1t) · poly(H,S,A),

where H is the horizon, S : # of states, and A : # of actions.

High-level: exhaustively learn the transition model; then conduct
policy elimination over all deterministic policies.

Starting point: UCB-VI [Atar et al.,’17] and our adjustment:

▶ Use uncertainty-driven reward functions r(s, a) ≈ 1√
n(s,a)

;

▶ Play policies that maximize the uncertainty to aggressively explore the
transition model;

▶ Conduct policy elimination when model is well-approximated.
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