Uniform Last-Iterate Guarantee for Bandits and Reinforcement Learning

Junyan Liu ¹ Yunfan Li ² Ruosong Wang ³ Lin F. Yang ²

¹ University of Washington

²University of California, Los Angeles

³Peking University

- In online learning framework, a learner is given a policy set and sequentially interacts with environment. At each round, the learner
	- \blacktriangleright Play a policy from the policy set.
	- \triangleright Observe the reward(s).

- In online learning framework, a learner is given a policy set and sequentially interacts with environment. At each round, the learner
	- \blacktriangleright Play a policy from the policy set.
	- \triangleright Observe the reward(s).
- This framework can be instantiated by bandit problems and online reinforcement learning.

- In online learning framework, a learner is given a policy set and sequentially interacts with environment. At each round, the learner
	- \blacktriangleright Play a policy from the policy set.
	- \triangleright Observe the reward(s).
- This framework can be instantiated by bandit problems and online reinforcement learning.
- Common Goal. Obtain a good cumulative performance typically measured by regret or PAC bounds.

- In online learning framework, a learner is given a policy set and sequentially interacts with environment. At each round, the learner
	- \blacktriangleright Play a policy from the policy set.
	- \triangleright Observe the reward(s).
- This framework can be instantiated by bandit problems and online reinforcement learning.
- Common Goal. Obtain a good cumulative performance typically measured by regret or PAC bounds.

How about instantaneous performance?

• **Issue:** for high-stakes applications such as medical trials, a good cumulative performance is not enough. Every policy matters!

Good cumulative performance, but some very bad policies

What we hope: good cumulative performance & every policy is not too bad

• **Issue:** for high-stakes applications such as medical trials, a good cumulative performance is not enough. Every policy matters!

What we hope: good cumulative performance & every policy is not too bad

• A natural question arises:

Contributions: a new metric

Definition: uniform last-iterate (ULI)

Let Δ_t be the suboptimality gap at round t. An algorithm is ULI, if for a given $\delta \in (0,1),$

$$
\mathbb{P}(\forall t \in \mathbb{N} : \Delta_t \le F(\delta, t)) \ge 1 - \delta,
$$

where $F(\delta, t)$ is polynomial in $\log(1/\delta)$ and proportional to the product of power functions of $\log t$ and $1/t$ (e.g., $F(\delta,t) \approx \sqrt{\frac{\log t}{t}}$).

By definition, ULI itself characterizes the instantaneous performance.

Contributions: a new metric

Definition: uniform last-iterate (ULI)

Let Δ_t be the suboptimality gap at round t. An algorithm is ULI, if for a given $\delta \in (0,1),$

$$
\mathbb{P}(\forall t \in \mathbb{N} : \Delta_t \le F(\delta, t)) \ge 1 - \delta,
$$

where $F(\delta, t)$ is polynomial in $\log(1/\delta)$ and proportional to the product of power functions of $\log t$ and $1/t$ (e.g., $F(\delta,t) \approx \sqrt{\frac{\log t}{t}}$).

- By definition, ULI itself characterizes the instantaneous performance.
- ULI implies uniform-PAC.
	- ▶ Not only cumulative but also instantaneous performance.

Contributions: a new metric

Definition: uniform last-iterate (ULI)

Let Δ_t be the suboptimality gap at round t. An algorithm is ULI, if for a given $\delta \in (0,1),$

$$
\mathbb{P}(\forall t \in \mathbb{N} : \Delta_t \le F(\delta, t)) \ge 1 - \delta,
$$

where $F(\delta, t)$ is polynomial in $\log(1/\delta)$ and proportional to the product of power functions of $\log t$ and $1/t$ (e.g., $F(\delta,t) \approx \sqrt{\frac{\log t}{t}}$).

- By definition, ULI itself characterizes the instantaneous performance.
- ULI implies uniform-PAC.
	- ▶ Not only cumulative but also instantaneous performance.

Is ULI optimally achievable by bandit and RL algorithms?

For finite arm setting, we show (K is # of arms; Δ is minimum gap):

For finite arm setting, we show (K is # of arms; Δ is minimum gap):

Phased elimination (PE) holds ULI with

$$
F(t,\delta) \lesssim t^{-\frac{1}{2}} \sqrt{K \log(\delta^{-1} K \log(t))}.
$$

For finite arm setting, we show (K is # of arms; Δ is minimum gap):

Phased elimination (PE) holds ULI with

$$
F(t,\delta) \lesssim t^{-\frac{1}{2}} \sqrt{K \log(\delta^{-1} K \log(t))}.
$$

An algorithmic lower bound for lil'UCB [Jamieson et al., 2014];

$$
\exists t = \Omega\left(\Delta^{-2}\right) \text{ such that } F(t,\delta) \gtrsim t^{-\frac{1}{4}} \sqrt{\log\left(\delta^{-1}\log\left(\Delta^{-1}\right)\right)}.
$$

- lil'UCB is uniform-PAC since bonus function is as $\sqrt{\log\log n/n}$ rather than $\sqrt{\log \log t/n}.$
- Near-opt ULI implies near-opt uniform-PAC, but not the other way around, i.e., ULI is strictly stronger than uniform-PAC.

For compact large arm space (possibly infinite), we propose an oracle-efficient linear bandit algorithm that holds the ULI.

- For compact large arm space (possibly infinite), we propose an oracle-efficient linear bandit algorithm that holds the ULI.
- **Starting point: phased elimination [Chapter 22, Bandit Algorithms].**

- For compact large arm space (possibly infinite), we propose an oracle-efficient linear bandit algorithm that holds the ULI.
- **Starting point: phased elimination [Chapter 22, Bandit Algorithms].**
- **Computational issue of phased elimination (PE):**
	- \triangleright complexity of G-optimal design scales linearly with arm set.

- For compact large arm space (possibly infinite), we propose an oracle-efficient linear bandit algorithm that holds the ULI.
- **Starting point: phased elimination [Chapter 22, Bandit Algorithms].**
- **Computational issue of phased elimination (PE):**
	- \triangleright complexity of G-optimal design scales linearly with arm set.
- Key idea: select finite arms to represent all well-behaved active arms. Then, do G-optimal design on finite arms.

- For compact large arm space (possibly infinite), we propose an oracle-efficient linear bandit algorithm that holds the ULI.
- **Starting point: phased elimination [Chapter 22, Bandit Algorithms].**
- **Computational issue of phased elimination (PE):**
	- \triangleright complexity of G-optimal design scales linearly with arm set.
- Key idea: select finite arms to represent all well-behaved active arms. Then, do G-optimal design on finite arms.
- Key technique: Adaptive barycentric spanner, generalize that of [Awerbuch & Kleinberg, 2008];
	- ▶ Adaptively find proper linear subspace in which active arms span.
	- ighthroall a linearly-constrained optimization oracle poly (d) times.
- ULI guarantee: $F(\delta,t) \lesssim t^{-\frac{1}{2}} \sqrt{d^3 \log(dt)}$.

Achievability in online RL

For tabular episodic MDPs, we propose a model-based alg. with ULI guarantee:

$$
F(\delta,t) \lesssim t^{-\frac{1}{2}}\log(\delta^{-1}t) \cdot \texttt{poly}(H,S,A),
$$

where H is the horizon, $S : \#$ of states, and $A : \#$ of actions.

Achievability in online RL

• For tabular episodic MDPs, we propose a model-based alg. with ULI guarantee:

$$
F(\delta,t) \lesssim t^{-\frac{1}{2}}\log(\delta^{-1}t) \cdot \text{poly}(H,S,A),
$$

where H is the horizon, $S : \#$ of states, and $A : \#$ of actions.

- High-level: exhaustively learn the transition model; then conduct policy elimination over all deterministic policies.
- Starting point: UCB-VI [Atar et al.,'17] and our adjustment:
	- ▶ Use uncertainty-driven reward functions $r(s, a) \approx \frac{1}{\sqrt{2}}$ $\frac{1}{n(s,a)}$;
	- \blacktriangleright Play policies that maximize the uncertainty to aggressively explore the transition model;
	- \triangleright Conduct policy elimination when model is well-approximated.