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Problem setting｜Autonomous Driving (AD) Tasks

Perception Prediction Planning

Bounding
boxes

Waypoints Trajectory

What are around? How will they go 
in the future?

Where should I go?

Challenge | Various weathers, 
illuminations, and scenarios



Challenge - Robustness and Generalization

(a) Long-tailed Distribution (b) Covariate Shift (c) Domain Adaptation
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- Costly and laborious to collect and 
annotate the data

- Collecting data on dangerous driving 
can even pose a risk to life

Motivation | Synthetic Data Generation for Driving

Real Data Collection

Credit to UniSim, 
Sora, GenAD

Synthetic Data Generation

Credit to Seeing Machines

Small-scale Dataset

Manual Collection

- A promising alternative to harvest annotated 
training data

Simulators

Generative Models

http://www.youtube.com/watch?v=qy3UPc3x-Q0&t=106
http://www.youtube.com/watch?v=TAflTfPckQs
http://www.youtube.com/watch?v=omviFk0gQxA


2023.6

BEVControl — generate images from 
perspective layouts via diffusion models

Static

Driving Scene Generation

BEVGen — generate realistic 
static images from layouts

2023.12 2024.6
Multi-view Temporal

Trending in E2EAD｜Synthetic Data Generation
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BEVGen — generate static 
images from BEV layouts
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Trending in E2EAD｜Synthetic Data Generation

MagicDrive — generate multiview 
images from BEV maps

Panacea — first achieves temporal 
consistency

BEVControl — generate images from 
perspective layouts via diffusion models

DriveDiffusion — best in data 
augmentation

GenAD — state-of-the-arts with 
highest video quality



2023.6
Static

Driving Scene Generation

BEVGen — generate static 
images from BEV layouts

2023.12 2024.6
Multi-view Temporal

Trending in E2EAD｜Synthetic Data Generation

MagicDrive — generate multiview 
images from BEV maps

Panacea — first achieves temporal 
consistency

BEVControl — generate images from 
perspective layouts via diffusion models

DriveDiffusion — best in data 
augmentation

GenAD — state-of-the-arts with 
highest video quality

Drawbacks

- Appearance diversity: confined to learning on small-scale datasets with 
limited scenarios (e.g., only urban streets or restricted weather conditions)

- Layout diversity: the behaviors are tedious and lack complex or 
safety-critical situations

Benefits Realistic

http://www.youtube.com/watch?v=yrOYxLt9SCI


2021

Generation via Simulators

MetaDrive — composing driving scenarios 
for generalizable reinforcement learning

2022 2023

Trending in E2EAD｜Synthetic Data Generation

CARLA — supporting development, training, and 
validation of autonomous driving systems

Drawbacks

- Appearance diversity: only contain a limited amount of 3D assets, and they 
lack a realistic visual appearance

Benefits

- Layout diversity: effortlessly generate scenes with various behaviors and provide accurate control over all 
objects 

http://www.youtube.com/watch?v=q4V9GYjA1pE
http://www.youtube.com/watch?v=XyKGJm2OxjM&t=120


Credit to metadriverse.github.io/simgen



Insights｜Simulator-conditioned Generative Model

- We propose a controllable and diverse scene generation paradigm through the simulator-conditioned 
generative model, SimGen. 

- It learns from real-world and simulated data and then generate diverse driving scenes based on the 
simulator’s control conditions and rich text cues.



SimGen - The Big Picture

Simu-conditioned Model

Cascaded Diffusion Model 
for autonomous driving

How to formulate? 
Simulation-to-Reality (Sim2Real) Gaps?

Applications

Data Augmentation

Closed-loop Evaluation

DIVA Dataset

In-the-wild Driving Videos

Virtual Data

Partial photo by courtesy of online resources.

http://www.youtube.com/watch?v=WO_9Gd8q9Kw


DIVA Dataset - Appearance and Layout Diversity

DIVA is the best on scale, diversity, and 
annotations

Comparisons Construction

- Including in-the-wild and virtual driving videos
- Full auto labeling

Examples

http://www.youtube.com/watch?v=fkps18H3SXY&t=1200


DIVA Dataset - Appearance and Layout Diversity

Log Replay

Examples of Generative Adversarial Scenarios 

Safety-critical Scenarios Log Replay Safety-critical Scenarios

Credit to metadriverse.github.io/cat



DIVA Dataset - Appearance and Layout Diversity

Log Replay

Examples of Generative Adversarial Scenarios 

Safety-critical Scenarios Log Replay Safety-critical Scenarios

Credit to metadriverse.github.io/cat



SimGen - Overview

- Input:  text and scene record 
- Stage 1 (CondDiff): converts SimCond into RealCond, representing real depth and 

segmentation
- Stage 2 (ImgDiff): an Adapter merges multi-source conditions into a unified control 

condition and generates driving scene images.

Empirical Study

Real/SimCond: depth and segmentation; 
ExtraCond: rendered RGB, instance 
maps, and top-down views



SimGen - Overview

- Naive approach: training a domain transfer model  requires 
paired data far exceeding public datasets

- Ours: CondDiff injects noise-added SimCond into the 
intermediate sampling process and converts it into realistic 
conditions via continuous denoising

CondDiff ImgDiff

- ExtraCond offers additional information but 
exists condition conflicts

- Ours: mapping variable conditions into 
fixed-length vectors and enabling a unified 
control input interface 



Experiments

Quality Diversity Controllability Applications on data augmentation

Quantitative Results



Experiments

Diverse Appearances
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LEGO Ukiyo-e Minecraft Super Mario



Experiments

Diverse Appearances

LEGO Ukiyo-e Minecraft Super Mario



Experiments

Safety-critical Layouts

Applications on Closed-loop Evaluation

Efficiency of Simu-conditions



Conclusions

- SimGen is not designed for video generation. 

- SimGen does not cope with common settings such as 
multi-view generation. 

- Inheriting the drawbacks of diffusion models, SimGen 
suffers from long inference time, which may impact 
the applications like closed-loop training. 

Grab-and-go

Limitations

-  A simulator-conditioned diffusion model, SimGen, that learns to generate diverse driving scenarios by 
mixing data from the simulator and the web.

- A novel dataset containing massive web and simulated driving videos that ensure diverse scene 
generation and advanced simulation-to-reality research is collected.



END


