Hamiltonian Score Matching and Generative Flows

Conference on Neural Information Processing Systems (NeurIPS)

Vancouver, 2024

Overview

- **Previous work**: Classical Hamiltonian mechanics has been widely used in ML via Hamiltonian Monte Carlo in applications with *pre-determined* force fields
- **Motivation of this work**: *Design* force fields for Hamiltonian ODEs for the purpose of generative modeling

Contributions

- (1) Hamiltonian Score Matching (HSM): learn score functions via Hamiltonian trajectories
- (2) Hamiltonian Generative Flows (HGFs): a generative model framework building on Hamiltonian velocity predictors

Background: Score Matching and Hamiltonian Dynamics

Score Matching:

Given data distribution π score is defined as $\nabla \log \pi$

Score Matching (SM) aims to learn score.

Previous methods:

- Denoising SM
- Implicit SM

Hamiltonian: Energy of system

$$H(x,v) = U(x) + \frac{1}{2} \|v\|^2$$

Potential energy (neg log-likelihood of data) *Kinetic energy* (neg log-likelihood of Gaussian)

Hamiltonian dynamics

$$(\frac{d}{dt}x(t), \frac{d}{dt}v(t)) = (v(t), -\nabla U(x(t)))$$
$$= (v(t), \nabla \log \pi(x(t)))$$

Score function

Can we use the connection between Hamiltonian dyn. and score function to learn score functions from data?

Characterize Score via Hamiltonian Dynamics

- Given data distribution π , define Boltzmann-Gibbs distribution: $\pi_{BG} = \pi \otimes \mathcal{N}(0, \mathbf{I}_d), \quad \pi_{BG}(x, v) = \exp(-H(x, v))/Z = \pi(x)\mathcal{N}(v; 0, \mathbf{I}_d)$
- Hamiltonian dynamics preserve Boltzmann-Gibbs distribution this is used in Hamiltonian Monte Carlo.
- Idea: Can we use this fact to uniquely characterize the score

function?

Theorem 1. Let T > 0 and $F_{\theta}(x)$ a force field. Let $\Pi = \pi_{BG} = \pi \otimes \mathcal{N}(0, \mathbf{I}_d)$. The following statements are equivalent:

- 1. Score vector field: The force field F_{θ} equals the score, i.e. $F_{\theta}(x) = \nabla_x \log \pi(x)$ for π -almost every $x \in \mathbb{R}^d$.
- 2. **Preservation of Boltzmann-Gibbs:** The PH-ODE with F_{θ} preserves the Boltzmann-Gibbs distribution π_{BG} .
- 3. Conditional velocity is zero: The velocity given the location after running the PH-ODE with F_{θ} is zero if starting conditions $z = (x_0, v_0)$ are sampled from π_{BG} :

$$z \sim \pi_{BG} \quad \Rightarrow \quad \mathbb{E}[v_t^{\theta}(z)|x_t^{\theta}(z)] = 0 \quad \text{for all } 0 \le t < T$$
 (13)

Idea: Use characterization of score via velocity predictors for score matching

Hamiltonian Score Discrepancy

Define Loss Function:

$$L_{\text{hsm}}(\phi|\theta,t) = \mathbb{E}_{z \sim \pi_{BG}} \left[\|V_{\phi}(x_t^{\theta},t)\|^2 - 2V_{\phi}(x_t^{\theta},t)^T v_t^{\theta} \right]$$

Squared norm of predicted velocity

Similarity to actual velocity

Loss at optimal velocity:

$$\mathbb{D}_{hsm}(\theta|t,\pi) := -\min_{\phi \in I} L_{hsm}(\phi|\theta,t) = \mathbb{E}_{z \sim \pi_{BG}}[\|\mathbb{E}[v_t^{\theta}|x_t^{\theta}]\|^2]$$
We want this to be
zero

Theorem: Minimization of the HSD results in learning the score:

$$\theta^* = \operatorname*{arg\,min}_{\theta} \mathbb{D}_{hsm}(\theta|\pi) \Rightarrow s_{\theta^*} = \nabla \log \pi$$

Hamiltonian Score Matching

Minimize Hamiltonian Score Discrepancy by jointly training velocity predictor and score network

(a) Density $\pi(x)$

(b) Learnt score F_{θ}

Vectors closely approximate gradient of log-likelihood

(c) Learnt velocity predictor V_{ϕ}

Optimal velocity is close to zero everywhere

Hamiltonian Generative Flows

Idea: Can we use Hamiltonian velocity predictors also for suboptimal force fields?

Yes, by **simulating a CNF** with the optimal velocity predictor backwards in time:

$$x_T \sim \pi_T \quad \frac{d}{dt} x(t) = V_{\phi^*}(x,t) \Rightarrow x(0) \sim \pi$$

Resulting **generative model** is similar to FM and diffusion.

2 design choices:

- Force field
- Coupling of distribution over phase space (x,v)

2 requirements:

- Simulation of dynamics with force field have to be efficient
- Tractable distribution at T>0

Example of Hamiltonian Generative Flows - 1

- **Diffusion Models**: zero force field, independent coupling of location and velocity.
- (CondOT) **Flow Matching**: zero force field, coupled velocity and location.
- Oscillation HGFs: force field corresponding to simple pendulum

(b) Flow matching

(c) Oscillation HGFs.

(a) Diffusion

х

Example of HGFs – 2: Reflection HGFs

Idea: Particles move freely in a box with reflection ("infinite force") at walls

Convergence: Distribution of particles will converge towards a uniform distribution

Training can be done *simulation-free*.

Uniform distribution (max entropy)

Data distribution

Results

- (1) Validated HSD as a novel metric and HSM as a novel score matching method
- (2) Achieved near-SOTA results with Oscillation HGFs on image generation

(a) ESM loss vs HSD for networks trained for 1 epoch

(b) Empirical HSD vs. Taylor approximation (see Proposition 2)

(c) Std vs absolute mean of derivative of param. of score network.

Figure 4: Image generation examples based on Oscillation HGFs for FFHQ.

Table 1: Sample quality (FID) and number of function evaluation (NFE).

METHOD	$FID\downarrow$	NFE \downarrow
CIFAR-10 (unconditional)-32x32		
StyleGAN2-ADA [27]	2.92	1
DDPM [21]	3.17	1000
LSGM [47]	2.10	147
PFGM [50]	2.48	104
VE-SDE [45]	3.77	35
VP-SDE [45]	3.01	35
EDM [26]	1.98	35
FM-OT (BNS) [40]	2.73	8
Oscillation HGF (ours)	2.12	35
CIFAR-10 (class conditional)-32x32		
VE-SDE [45]	3.11	35
VP-SDE [45]	2.48	35
EDM [26]	1.79	35
Oscillation HGF (ours)	1.97	35
FFHQ (unconditional)-64x64		
VE-SDE [45]	25.95	79
VP-SDE [45]	3.39	79
EDM [26]	2.39	79
Oscillation HGF (ours)	2.86	79

Thank you for your attention!

Contact: phold@mit.edu

Poster session: Fri 13 Dec 4:30 p.m. PST — 7:30 p.m. PST

Visit us at our poster session!

Thank you to my coauthors!

Yilun Xu

Tommi Jaakkola

