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• Challenge: Communication-efficiency and 
statistically heterogeneous (Non-IID ) client
data [Zhao’20]
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• Problem 1:
pFL approaches typically do not benefit and can
even harm global model performance

• Problem 2: 
Personalized models do not directly benefit from
one another but through global model



(Linear) Mode Connectivity

• Observation: Neural network solutions (modes) 
that started from different random
initializations are connected by simple paths
[Garipov’18]

• Models along these paths in parameter space
exhibit low loss and functional diversity



Neural Network Simplex Learning

• Linear connectivity can be enforced during
training with extra computational cost
[Wortsman’21]
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• Midpoint per design lies in flat minimum



Neural Network Simplex Learning

• Linear connectivity can be enforced during
training with extra computational cost
[Wortsman’21]

• Midpoint per design lies in flat minimum

• Connection to Hochreiter et al. (1997) : Flat 
minima and tend to be more robust to gap 
between empirical (training) loss and 
population loss (test loss) and thus generalize 
better.

[Foret’21]
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grouped together [Grinwald’24]
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Federated Learning over Connected Modes (Floco)

• Idea: Train neural network solution 
simplex within which similar clients are 
grouped together

• Each point in the simplex correspond to 
one model realization

• Sufficient to train solution simplex over 
last layer parameters only

• Result: 

• Flat region in loss surface

• SOTA personalized models that 
benefit each other (proj. points)

• Robust and well-performing global 
model (midpoint)



Evaluation

Reduced gradient
variance



Summary

• Floco beats SOTA pFL baselines on local and global test accuracy and ECE.

• Applicable to both randomly initialized as well as pretrained models. 

• Minimal computational overhead as compared to regular FedAvg.

• Promising future directions include cross-device FL settings and the more general model 
merging setting.



Thank you!
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