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Shapes analysis for time series 
Thibaut Germain*, Samuel Gruffaz, Charles Truong, Alain Durmus, & Laurent Oudre

Objective:  
This study aims to analyze inter-individual variability within a time series 

dataset characterized by irregular sampling intervals and variable 
sequence lengths. 

Methodology:  
Unsupervised representation learning with an emphasis on capturing 

shape structure. 
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An example: mice ventilation analysis 
The following experiment was performed for mice of different genotypes (ColQ or WT). 

Genotype dependent respiratory cycle: 

ColQWT
Respiratory 
cycles 
extraction
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Output : a graph of reference  , deformation parameters 𝖦0 ⊂ ℝd+1 (αj)j∈[N] ∈ (ℝm)N

Input :  

1. The shape of  is  

2.  is represented as the deformation of a reference 
graph , i.e. : 

 , 

where  is a diffeomorphism 
parametrized by .  

3. Learned by solving the empirical Fréchet mean:  

(sj : 𝖨j ↦ ℝd)j∈[N]

sj 𝖦j = {(t, sj(t) : t ∈ 𝖨j}

𝖦j
𝖦0 = {(t, s0(t) : t ∈ 𝖨}

𝖦j ≈ ϕαj
⋅ 𝖦0 = {ϕαj (t, s0(t)) : t ∈ 𝖨}

ϕαj
: ℝd+1 ↦ ℝd+1

αj ∈ ℝm

arg min
𝖦0,(αj)j∈[N]

1
N ∑

j∈[N]
(d2

𝖦(ϕαj
⋅ 𝖦0, 𝖦j) + λd2

Φ(Id, ϕαj
))

𝖦0

𝖦1 𝖦2

𝖦5

𝖦4

𝖦3

ϕα1 ϕα2

ϕα3

ϕα4

ϕα5

α5α4α3α2α1

𝖦0
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The optimisation problem.  
Solved by gradient descent: 

Overview
arg min

𝖦0,(αj)j∈[N]

1
N ∑

j∈[N]
(d2

𝖦(ϕαj
⋅ 𝖦0, 𝖦j) + λ d2

Φ(Id, ϕαj
))

(a) (b)
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s0 h γ−1 s

Deformation requirements. Diffeomorphic deformations are built with the LDDMM framework [2], and presented 
in Section 3. Our contributions, presented in Section 4, impose that for any  and , the 
diffeomorphism  mapping  to  is the combination of a distortion  and a time parametrization 

 such that:  

s0 : 𝖨 ↦ ℝd s : 𝖩 ↦ ℝd

ϕ s0 s h : 𝖨 ↦ ℝ
γ−1 : 𝖩 ↦ 𝖨 ϕ ⋅ 𝖦(s0) = 𝖦((s0 + h) ∘ γ−1) = 𝖦(s)

(a) Distance measuring the similarity between  and  embedded as varifold measure [1]. This distance is 
similar to Maximum Mean Discrepancy (MMD) and is presented in Section 4.1.  

(b) Distance comparing  and   to privilege minimal diffeomorphic deformation and prevent overfitting. 
Presented in Section 3. 

ϕαj
⋅ 𝖦0 𝖦j

ϕαj
Id

[1] Kaltenmark, I., Charlier, B., & Charon, N. (2017). A general framework for curve and surface comparison and registration with oriented varifolds.
[2] Beg, M. F., Miller, M. I., Trouvé, A., and Younes, L. Computing large deformation metric mappings via geodesic flows of diffeomorphisms.



Key elements from LDDMM [1]

[1].    Beg, M. F., Miller, M. I., Trouvé, A., and Younes, L. Computing large deformation metric mappings via geodesic flows of diffeomorphisms.
[2] Miller, M. I., Trouvé, A., and Younes, L.. Geodesic shooting for computational anatomy.

Geodesic shooting. Geodesic flow from  with initial velocity field  
can be defined [2]. By denoting  the geodesic starting from  with 
initial conditions , the exponential map is:  

      and       

In practice,  is parametrized by , the kernel associated with , the sampled 
time series graph  and the parameters  such that:  

Id v0 ∈ 𝖵
τ ↦ ρv0

(τ) Id
v0 ∈ 𝖵

expId : v0 ∈ 𝖵 ↦ ρv0
(1) ∈ Φ d2

Φ(Id, expId(v0)) = ∥v0∥2
𝖵

v0 K 𝖵
𝖦0 ∈ (ℝd+1)N0 α0 ∈ (ℝd+1)N0

v0 : x ∈ ℝd+1 ↦ ∑
k∈[N0]

K(gk
0, x)αk

0 ∈ ℝd+1
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Id

expId(v0) expId(v1)

v0
v1

𝖦0

expId(v0) ⋅ 𝖦0 expId(v1) ⋅ 𝖦0

𝖵

Φ

Generating diffeomorphisms. Assuming  a time-varying velocity field in , where   is an RKHS 
with some regularity assumptions [1]. For any ,  the differential system: 

     with      

has a unique solution defined for all . The flow application:  solution of (1) at time 
 is a diffeomorphism. Our interest is in the group of diffeomorphisms: . 

v ∈ 𝖫2([0,1], 𝖵) ℝn 𝖵
x0 ∈ ℝn

𝖽X(τ)
𝖽τ

= vτ(X(τ)) X(0) = x0

τ ∈ [0,1] ϕτ
v : x0 ∈ ℝn ↦ X(τ) ∈ ℝn

τ ∈ [0,1] Φ ≜ {ϕ1
v | v ∈ 𝖫2([0,1], 𝖵)}
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An example: mice ventilation analysis before drug injection 
For  mice of different  genotype (ColQ or WT): 

Genotype dependent respiratory cycle: 

ColQWT
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𝖦0
PC densities

Deformations by flowing along PCs:

ColQ

WT

PC1/PC2

Mice ventilation analysis before drug injection
Kernel PCA is applied on the initial velocity field parameters , resulting in the  
principal axis of deformations with the initial velocity field .

(𝖦0, αi)i∈[N] K
(𝖦0, αpc

j )j∈[K]
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Thank you ! 
More details are provided in the next slides
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I. Building diffeomorphisms with LDDMM [1]

[1].    Beg, M. F., Miller, M. I., Trouvé, A., and Younes, L. Computing large deformation metric mappings via geodesic 
flows of diffeomorphisms.
[2] Miller, M. I., Trouvé, A., and Younes, L.. Geodesic shooting for computational anatomy.

Generating diffeomorphisms. Assuming  a time-varying velocity field in , where   is an RKHS 
with some regularity assumptions [1]. For any ,  the differential system: 

     with      ,                                                           (1) 

has an unique solution defined for all . The flow application:  solution of (1) at 
time  is a diffeomorphism.  

A metric group. The  is metrizable such that for any : 

,                                                           (2) 

the infimum is reached with a  and it conserves its norm along its geodesic path i.e.: . 

An exponential map. Geodesic flow from  with initial velocity field  can be derived from (2) [2]. By 
denoting  the geodesic starting from  with initial conditions , the exponential map is:  

      and      

v ∈ 𝖫2([0,1], 𝖵) ℝn 𝖵
x0 ∈ ℝn

𝖽X(τ)
𝖽τ

= vτ(X(τ)) X(0) = x0

τ ∈ [0,1] ϕτ
v : x0 ∈ ℝn ↦ X(τ) ∈ ℝn

τ ∈ [0,1]

Φ ≜ {ϕ1
v | v ∈ 𝖫2([0,1], 𝖵)} ϕ ∈ Φ

d2
Φ(Id, ϕ) = inf

v∈𝖫2([0,1],𝖵) {∫
1

0
∥vτ∥2

𝖵 |ϕ1
v = ϕ }

v* ∥v*τ ∥𝖵 = ∥v*0 ∥𝖵, ∀τ ∈ [0,1]

Id v0 ∈ 𝖵
τ ↦ ρv0

(τ) Id v0 ∈ 𝖵

expId : v0 ∈ 𝖵 ↦ ρv0
(1) ∈ Φ d2

Φ(Id, expId(v0)) = ∥v0∥2
𝖵
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Let denote  the kernel of the RKHS . 

Given  control points , and momentums , the initial velocity field is, 

 .  

Then, for any ,  

,  

governed by the geodesic equations:

K : ℝn × ℝn → ℝn2 𝖵

N0 𝖷0 = (x0
k )k∈[N0] ∈ (ℝn)N0 α = (α0

k )k∈[N0] ∈ (ℝn)N0

v0 : x ∈ ℝn ↦ ∑
i∈[N0]

K(x0
k , x)α0

k ∈ ℝn

τ ∈ [0,1]

vτ : x ∈ ℝn ↦ ∑
i∈[N0]

K(xk(τ), x)αk(τ) ∈ ℝn

[1] Miller, M. I., Trouvé, A., and Younes, L. Geodesic shooting for computational anatomy. 

I. Computing the Exponential map [1]

(E)
𝖽xk(τ)

𝖽τ
= vτ(xk(τ))

𝖽αk(τ)
𝖽τ

= − ∑l∈N0
𝖽xk(τ)K(xk(τ), xl(τ))αl(τ)⊤αk(τ) {xk(0) = x0

k

αk(0) = α0
k

with ∀k ∈ [N0]
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Theorem. For any continuously differentiable time series  and ,  there exists deformations 
 with , and  with , 

such that:  

      with       , 

Moreover, for any , and ,  is the graph of a continuously differentiable time 
series.

s0 : 𝖨 ↦ ℝd s : 𝖩 ↦ ℝd

Ψγ : (t, x) ∈ ℝd+1 ↦ (γ(t), x) ∈ ℝd+1 γ ∈ 𝖣(ℝ) Πf : (t, x) ∈ ℝd+1 ↦ (t, f(t, x)) ∈ ℝd+1 f ∈ 𝖢1(ℝd+1, ℝd)

ϕγ, f ⋅ 𝖦(s0) = 𝖦(s) ϕγ, f = Ψγ ∘ Πf

γ̄ ∈ 𝖣(ℝ) f̄ ∈ 𝖢1(ℝd+1, ℝd) ϕγ̄, f̄ ⋅ 𝖦(s0)

II. Time series deformation representation

11

s0 h γ−1 sIntuition. Let  and , the 
diffeomorphic deformation  mapping  to  should be 
seen as distortion  and a time parametrization 

 such that:  

s0 : 𝖨 ↦ ℝd s : 𝖩 ↦ ℝd

ϕ s0 s
h : 𝖨 ↦ ℝ

γ−1 : 𝖩 ↦ 𝖨 ϕ ⋅ 𝖦(s0) = 𝖦((s0 + h) ∘ γ−1) = 𝖦(s)

Remark. For any time series  and deformation , the time parametrization and the distortion are: s0 : 𝖨 ↦ ℝd ϕγ̄, f̄

{γ−1 : t ∈ γ̄(𝖨) ↦ γ̄−1(t) ∈ 𝖨
h : t ∈ 𝖨 ↦ f̄(t, s0(t)) − s0(t)



II. A kernel for time series deformations
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The proposed kernel. We consider the kernel  defined for any , 

      with       

parametrized by  and the constants . 

K𝖦 (t, x), (t′ , x′ ) ∈ (ℝd+1)2

K𝖦((t, x), (t′ , x′ )) = (
c0Ktime 0

0 c1Kspace)
Ktime = K(1)

σT,0
(t, t′ )

Kspace = K(1)
σT,1

(t, t′ )K(d)
σx

(x, x′ )Id

σT,0, σT,1, σx > 0 c0, c1 > 0

Gaussian kernel. For any  and , the one-dimensional Gaussian kernel is defined as, 

. 

n ∈ ℕ* σ > 0

K(n)
σ : (x, y) ∈ ℝb × ℝn ↦ exp( −∥x − y∥2/σ)

Lemma. For any initial velocity field , the RKHS associated to ,  the diffeomorphic deformations learned 
by geodesic shooting ensures a time series graph structure along its geodesic path, i.e. 

For any , there exist  and  such that .  

v0 ∈ 𝖵 K𝖦

τ ∈ [0,1] γτ ∈ 𝖣(ℝ) fτ ∈ 𝖢1(ℝd+1, ℝd) expId(τv0) = Ψγτ
∘ Πfτ



• Large Deformation Diffeomorphic Metric Mapping (LDDMM) with a RBF kernel 
• TS-LDDMM an adaptation of LDDMM to time series (our contributions). 
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II. Difference between LDDMM and TS-LDDMM
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Let  be a sampled time series graph. The approximate varifold representation of  is the 
measure, 

      with       

Assuming that test functions belong to the dual of an RKHS  with kernel , such 
that,  

.  

The similarity between time series graphs  and  is given by,  

 

with,  

𝖦 = (gj)j∈[T] ∈ (ℝd+1)T 𝖦

μ𝖦 = ∑
j∈[T−1]

ljδ(xj,
→vj )

lj = ∥gj+1 − gj∥
xj = (gj + gj+1)/2
→vj = (gj+1 − gj)/∥gj+1 − gj∥

𝖶 k = kpos ⊗ kdir : ℝd+1 × 𝕊d ↦ ℝ

⟨δ(x1,
→v1), δ(x2,

→v2)⟩𝖶* = kpos(x1, x2)kdir(
→v1, →v2)

𝖦1 = (g1
j )j∈[T1] 𝖦2 = (g2

j )j∈[T2]

d2
𝖦(𝖦1, 𝖦2) = ∥μ𝖦1

− μ𝖦2
∥2

𝖶* = ⟨μ𝖦1
, μ𝖦1

⟩𝖶* − 2⟨μ𝖦1
, μ𝖦2

⟩𝖶* + ⟨μ𝖦2
, μ𝖦2

⟩𝖶*

⟨μ𝖦1
, μ𝖦2

⟩𝖶* = ∑
i∈[T1−1]

∑
j∈[T2−1]

l1
i l2

j kpos(x1
i , x2

j )kdir(
→1vi , →2vj )

[1] Kaltenmark, I., Charlier, B., & Charon, N. (2017). A general framework for 
curve and surface comparison and registration with oriented varifolds.

III. The varifold distance between time series graph [1]
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Further experiments
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Mice ventilation analysis before/after drug injection
For  mice of different  genotype (ColQ or WT): 

Genotype dependent respiratory cycle: 

ColQWT
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Mice ventilation analysis before/after drug injection
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(b) PC1 densities (c) Scatter PC1 vs PC3

(a) TS-LDDMM PC1 shooting
𝖦0

Kernel PCA is applied on the initial velocity field parameters , resulting in the  
principal axis of deformations with the initial velocity field .

(𝖦0, αi)i∈[N] K
(𝖦0, αpc

j )j∈[K]



Benchmark on classification task on 15 UCR/UEA datasets: 
Robustness to irregular sampling, comparison with state-of-the-art in deep learning. 
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Comparison of average f1score (macro) and ranks as the sample dropping rate increases. First & second best 
performers. TS-LDDMM is the best performer on three out of four dropping rates.



Benchmark on classification task on 15 UCR/UEA datasets 
Regular sampling, comparison with state-of-the-art in Functional Data Analysis. 
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Comparison of average f1score (macro) between methods from shape analysis and functional data analysis.               
First & second best performers.


