Shapes analysis for time series

Thibaut Germain*, Samuel Gruffaz, Charles Truong, Alain Durmus, & Laurent Oudre

Objective:

This study aims to analyze **inter-individual variability** within a time series dataset characterized by **irregular sampling** intervals and **variable** sequence lengths.

Methodology:

Unsupervised representation learning with an emphasis on capturing shape structure.

* Contact author, email: <u>thibaut.germain@ens-paris-saclay.fr</u>

normale ———	
supérieure ———	universite
baris—saclay——	PARIS-SACLAY

An example: mice ventilation analysis

The following experiment was performed for mice of different genotypes (ColQ or WT).

Methodology

Input:
$$\left(s_j : \mathbf{I}_j \mapsto \mathbb{R}^d\right)_{j \in [N]}$$

1. The shape of s_j is $G_j = \{(t, s_j(t) : t \in I_j\}$

2. G_j is represented as the deformation of a reference graph $G_0 = \{(t, s_0(t) : t \in I\}, i.e. :$

$$\mathbf{G}_{j} \approx \phi_{\alpha_{j}} \cdot \mathbf{G}_{0} = \{ \phi_{\alpha_{j}} \left(t, s_{0}(t) \right) : t \in \mathbf{I} \},\$$

where $\phi_{\alpha_j} : \mathbb{R}^{d+1} \mapsto \mathbb{R}^{d+1}$ is a diffeomorphism parametrized by $\alpha_j \in \mathbb{R}^m$.

3. Learned by solving the empirical Fréchet mean:

$$\underset{G_0,(\alpha_j)_j \in [N]}{\operatorname{arg\,min}} \frac{1}{N} \sum_{j \in [N]} \left(d_{\mathsf{G}}^2(\phi_{\alpha_j} \cdot \mathsf{G}_0, \mathsf{G}_j) + \lambda d_{\Phi}^2(Id, \phi_{\alpha_j}) \right)$$

Output : a graph of reference $G_0 \subset \mathbb{R}^{d+1}$, deformation parameters $(\alpha_j)_{j \in [N]} \in (\mathbb{R}^m)^N$

Overview

The optimisation problem.

Solved by gradient descent:

- similar to Maximum Mean Discrepancy (MMD) and is presented in <u>Section 4.1</u>.
- (b) Distance comparing ϕ_{α_i} and Id to privilege minimal diffeomorphic deformation and prevent overfitting. Presented in Section 3.

in <u>Section 3</u>. Our contributions, presented in <u>Section 4</u>, impose that for any $s_0 : \mathbf{I} \mapsto \mathbb{R}^d$ and $s : \mathbf{J} \mapsto \mathbb{R}^d$, the diffeomorphism ϕ mapping s_0 to s is the combination of a distortion $h: \mathbf{I} \mapsto \mathbb{R}$ and a time parametrization γ^{-1} : J \mapsto I such that: $\phi \cdot G(s_0) = G((s_0 + h) \circ \gamma^{-1}) = G(s)$

école [1] Kaltenmark, I., Charlier, B., & Charon, N. (2017). A general framework for curve and surface comparison and registration with oriented varifolds. normale-4 supérieure-[2] Beg, M. F., Miller, M. I., Trouvé, A., and Younes, L. Computing large deformation metric mappings via geodesic flows of diffeomorphisms. paris-saclay-

 $\underset{G_{0},(\alpha_{j})_{j}\in[N]}{\operatorname{arg\,min}} \frac{1}{N} \sum_{j\in[N]} \left(\underbrace{d_{G}^{2}(\phi_{\alpha_{j}} \cdot G_{0},G_{j}) + \lambda}_{(j)} \underbrace{d_{\Phi}^{2}(Id,\phi_{\alpha_{j}})}_{(j)} \right)$

(a) Distance measuring the similarity between $\phi_{\alpha_i} \cdot G_0$ and G_j embedded as varifold measure [1]. This distance is

Deformation requirements. Diffeomorphic deformations are built with the LDDMM framework [2], and presented

université PARIS-SACLAY

Key elements from LDDMM [1]

Generating diffeomorphisms. Assuming $v \in L^2([0,1], V)$ a time-varying velocity field in \mathbb{R}^n , where V is an RKHS with some regularity assumptions [1]. For any $x_0 \in \mathbb{R}^n$, the differential system:

$$\frac{\mathrm{d}X(\tau)}{\mathrm{d}\tau} = v_{\tau}(X(\tau))$$

has a unique solution defined for all $\tau \in [0,1]$. The flow application: $\phi_v^{\tau} : x_0 \in \mathbb{R}^n \mapsto X(\tau) \in \mathbb{R}^n$ solution of (1) at time $\tau \in [0,1]$ is a diffeomorphism. Our interest is in the group of diffeomorphisms: $\Phi \triangleq \{\phi_v^1 \mid v \in L^2([0,1],V)\}$.

Geodesic shooting. Geodesic flow from Id with initial velocity field $v_0 \in V$ can be defined [2]. By denoting $\tau \mapsto \rho_{v_0}(\tau)$ the geodesic starting from Id with initial conditions $v_0 \in V$, the exponential map is:

$$\exp_{Id}: v_0 \in \mathsf{V} \mapsto \rho_{v_0}(1) \in \Phi \quad \text{and} \quad d^2_{\Phi}(Id, \mathsf{ex})$$

In practice, v₀ is parametrized by K, the kernel associated with V, the sampled time series graph $G_0 \in (\mathbb{R}^{d+1})^{N_0}$ and the parameters $\alpha_0 \in (\mathbb{R}^{d+1})^{N_0}$ such that:

$$v_0: x \in \mathbb{R}^{d+1} \mapsto \sum_{k \in [N_0]} K(g_0^k, x) \alpha_0^k \in [N_0]$$

Beg, M. F., Miller, M. I., Trouvé, A., and Younes, L. Computing large deformation metric mappings via geodesic flows of diffeomorphisms. |1|. [2] Miller, M. I., Trouvé, A., and Younes, L.. Geodesic shooting for computational anatomy.

 $X(0) = x_0$ τ)) with

PARIS-SACLAY

An example: mice ventilation analysis before drug injection

For mice of different genotype (ColQ or WT):

Mice ventilation analysis before drug injection

More details are provided in the next slides

Thank you !

I. Building diffeomorphisms with LDDMM [1]

Generating diffeomorphisms. Assuming $v \in L^2([0,1], V)$ a time-varying velocity field in \mathbb{R}^n , where V is an RKHS with some regularity assumptions [1]. For any $x_0 \in \mathbb{R}^n$, the differential system:

time $\tau \in [0,1]$ is a diffeomorphism.

A metric group. The $\Phi \triangleq \{\phi_v^1 \mid v \in L^2([0,1], V)\}$ is metrizable such that for any $\phi \in \Phi$:

$$d_{\Phi}^{2}(Id,\phi) = \inf_{v \in L^{2}([0,1],\mathsf{V})} \left\{ \int_{0}^{1} \|v_{\tau}\|_{\mathsf{V}}^{2} |\phi_{v}^{1} = \phi \right\},\$$

An exponential map. Geodesic flow from *Id* with initial velocity field $v_0 \in V$ can be derived from (2) [2]. By denoting $\tau \mapsto \rho_{v_0}(\tau)$ the geodesic starting from *Id* with initial conditions $v_0 \in V$, the exponential map is:

 $\exp_{Id}: v_0 \in \mathsf{V} \mapsto \rho_{v_0}(1) \in \Phi$

Beg, M. F., Miller, M. I., Trouvé, A., and Younes, L. Computing large deformation metric mappings via geodesic flows of diffeomorphisms.

[2] Miller, M. I., Trouvé, A., and Younes, L.. Geodesic shooting for computational anatomy.

9

 $\frac{\mathrm{d}X(\tau)}{\mathrm{d}\tau} = v_{\tau}(X(\tau)) \quad \text{with} \quad X(0) = x_0 ,$

has an unique solution defined for all $\tau \in [0,1]$. The flow application: $\phi_v^{\tau} : x_0 \in \mathbb{R}^n \mapsto X(\tau) \in \mathbb{R}^n$ solution of (1) at

the infimum is reached with a v^* and it conserves its norm along its geodesic path i.e.: $\|v^*_{\tau}\|_{V} = \|v^*_{0}\|_{V}, \forall \tau \in [0,1].$

and
$$d_{\Phi}^2(Id, \exp_{Id}(v_0)) = ||v_0||_V^2$$

I. Computing the Exponential map [1]

Let denote $K : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^{n^2}$ the kernel of the RKHS V. Given N_0 control points $X_0 = (x_k^0)_{k \in [N_0]} \in (\mathbb{R}^n)^{N_0}$, and momentums $\alpha = (\alpha_k^0)_{k \in [N_0]} \in (\mathbb{R}^n)^{N_0}$, the initial velocity field is, $v_0: x \in \mathbb{R}^n \mapsto \sum K(x_k^0, x) \alpha_k^0 \in \mathbb{R}^n$. $i \in [N_0]$

Then, for any $\tau \in [0,1]$,

 $v_{\tau}: x \in \mathbb{R}^n \mapsto \sum_{i=1}^{n}$

governed by the geodesic equations:

(E)
$$\begin{cases} \frac{\mathrm{d}x_k(\tau)}{\mathrm{d}\tau} = v_{\tau}(x_k(\tau)) \\ \frac{\mathrm{d}\alpha_k(\tau)}{\mathrm{d}\tau} = -\sum_{l \in N_0} \mathrm{d}_{x_k(\tau)} K(x_k(\tau), x_l(\tau)) \end{cases}$$

10 [1] Miller, M. I., Trouvé, A., and Younes, L. Geodesic shooting for computational anatomy.

$$\sum_{[N_0]} K(x_k(\tau), x) \alpha_k(\tau) \in \mathbb{R}^n,$$

with
$$\forall k \in [N_0]$$

 $(au)) lpha_l(au)^{ op} lpha_k(au)$

 $\begin{cases} x_k(0) = x_k^{\circ} \\ \alpha_k(0) = \alpha_k^{\circ} \end{cases}$

II. Time series deformation representation

Intuition. Let $s_0 : \mathbf{I} \mapsto \mathbb{R}^d$ and $s : \mathbf{J} \mapsto \mathbb{R}^d$, the diffeomorphic deformation ϕ mapping s_0 to s should be seen as distortion $h: \mathbf{I} \mapsto \mathbb{R}$ and a time parametrization $\gamma^{-1}: \mathbf{J} \mapsto \mathbf{I}$ such that: $\phi \cdot \mathbf{G}(s_0) = \mathbf{G}((s_0 + b) \circ s^{-1}) = \mathbf{G}(c)$ γ^{-1} : J \mapsto I such that: $\phi \cdot G(s_0) = G((s_0 + h) \circ \gamma^{-1}) = G(s)$

Theorem. For any continuously differentiable time series $s_0 : \mathbf{I} \mapsto \mathbb{R}^d$ and $s : \mathbf{J} \mapsto \mathbb{R}^d$, there exists deformations $\Psi_{\gamma}: (t,x) \in \mathbb{R}^{d+1} \mapsto (\gamma(t),x) \in \mathbb{R}^{d+1} \text{ with } \gamma \in \mathsf{D}(\mathbb{R}), \text{ and } \Pi_{f}: (t,x) \in \mathbb{R}^{d+1} \mapsto (t,f(t,x)) \in \mathbb{R}^{d+1} \text{ with } f \in \mathsf{C}^{1}(\mathbb{R}^{d+1},\mathbb{R}^{d}),$ such that:

series.

 $\int \gamma^{-1} : t \in$ $h: t \in \mathbf{I}$

 $\phi_{\gamma,f} \cdot \mathbf{G}(s_0) = \mathbf{G}(s)$ with $\phi_{\gamma,f} = \Psi_{\gamma} \circ \Pi_f$,

Moreover, for any $\bar{\gamma} \in D(\mathbb{R})$, and $\bar{f} \in C^1(\mathbb{R}^{d+1}, \mathbb{R}^d)$, $\phi_{\bar{\gamma}, \bar{f}} \cdot G(s_0)$ is the graph of a continuously differentiable time

Remark. For any time series $s_0: \mathbf{I} \mapsto \mathbb{R}^d$ and deformation $\phi_{\bar{\gamma},\bar{f}}$, the time parametrization and the distortion are:

$$\bar{\gamma}(\mathbf{I}) \mapsto \bar{\gamma}^{-1}(t) \in \mathbf{I}$$

 $\mapsto \bar{f}(t, s_0(t)) - s_0(t)$

école —		
supérieure —	UNIVERSITE PARIS-SACLAY	CI IAP

II. A kernel for time series deformations

Gaussian kernel. For any $n \in \mathbb{N}^*$ and $\sigma > 0$, the one-dimensional Gaussian kernel is defined as, $K_{\sigma}^{(n)}$: $(x, y) \in \mathbb{R}^b \times$

The proposed kernel. We consider the kernel K_G defined for any $(t, x), (t', x') \in (\mathbb{R}^{d+1})^2$,

$$K_{G}((t, x), (t', x')) = \begin{pmatrix} c_0 K_{\text{time}} & 0 \\ 0 & c_1 K_{\text{space}} \end{pmatrix} \quad \text{with} \quad \begin{cases} K_{\text{time}} = K_{\sigma_{T,0}}^{(1)}(t, t') \\ K_{\text{space}} = K_{\sigma_{T,1}}^{(1)}(t, t') K_{\sigma_x}^{(d)}(x, x') I_d \end{cases}$$

by $\sigma_{T,0}, \sigma_{T,1}, \sigma_x > 0$ and the constants $c_0, c_1 > 0$.

parametrized by $\sigma_{T,0}, \sigma_{T,1}, \sigma_x$

Lemma. For any initial velocity field $v_0 \in V$, the RKHS associated to K_G , the diffeomorphic deformations learned by geodesic shooting ensures a time series graph structure along its geodesic path, i.e. For any $\tau \in [0,1]$, there exist $\gamma_{\tau} \in D(\mathbb{R})$ and $f_{\tau} \in C^1(\mathbb{R}^{d+1},\mathbb{R}^d)$ such that $\exp_{Id}(\tau v_0) = \Psi_{\gamma_{\tau}} \circ \Pi_{f_{\tau}}$.

$$\mathbb{R}^n \mapsto \exp(-\|x-y\|^2/\sigma).$$

II. Difference between LDDMM and TS-LDDMM

- Large Deformation Diffeomorphic Metric Mapping (LDDMM) with a RBF kernel
- TS-LDDMM an adaptation of LDDMM to time series (our contributions).

III. The varifold distance between time series graph [1]

Let $\mathbf{G} = (g_j)_{j \in [T]} \in (\mathbb{R}^{d+1})^T$ be a sampled time series graph. The approximate varifold representation of \mathbf{G} is the measure,

$$\mu_{\rm G} = \sum_{j \in [T-1]} l_j \delta_{(x_j, \vec{v_j})} \quad \text{with} \quad \begin{cases} l_j = \|g_{j+1} - g_j\| \\ x_j = (g_j + g_{j+1})/2 \\ \overrightarrow{v_j} = (g_{j+1} - g_j)/\|g_{j+1} - g_j\| \end{cases}$$

that,

$$\langle \delta_{(x_1,\vec{v_1})}, \delta_{(x_2,\vec{v_2})} \rangle_{\mathsf{W}^*} = k_{pos}(x_1, x_2)k_{dir}(\vec{v_1}, \vec{v_2}).$$

The similarity between time series graphs $\mathbf{G}_1 = (g_j^1)_{j \in [T_1]}$ and $\mathbf{G}_2 = (g_j^2)_{j \in [T_2]}$ is given by,
 $d_{\mathbf{G}}^2(\mathbf{G}_1, \mathbf{G}_2) = \|\mu_{\mathbf{G}_1} - \mu_{\mathbf{G}_2}\|_{\mathsf{W}^*}^2 = \langle \mu_{\mathbf{G}_1}, \mu_{\mathbf{G}_1} \rangle_{\mathsf{W}^*} - 2\langle \mu_{\mathbf{G}_1}, \mu_{\mathbf{G}_2} \rangle_{\mathsf{W}^*} + \langle \mu_{\mathbf{G}_2}, \mu_{\mathbf{G}_2} \rangle_{\mathsf{W}^*}$

with,

$$\langle \mu_{\mathsf{G}_1}, \mu_{\mathsf{G}_2} \rangle_{\mathsf{W}^*} = \sum_{i \in [T_1 - 1]} \sum_{j \in [T_2 - 1]} l_i^1 l_j^2 k_{pos}(x_i^1, x_j^2) k_{dir}(\vec{v}_i^1, \vec{v}_j^2)$$

14

[1] Kaltenmark, I., Charlier, B., & Charon, N. (2017). A general framework for curve and surface comparison and registration with oriented varifolds.

Assuming that test functions belong to the dual of an RKHS W with kernel $k = k_{pos} \otimes k_{dir}$: $\mathbb{R}^{d+1} \times \mathbb{S}^d \mapsto \mathbb{R}$, such

écolenormalesupérieureuniversite paris-saclay-PARIS-SACLAY

Further experiments

UNIVERSITE PARIS-SACLAY

Mice ventilation analysis before/after drug injection

For mice of different genotype (ColQ or WT):

Mice ventilation analysis before/after drug injection

Kernel PCA is applied on the initial velocity field parameters $(G_0, \alpha_i)_{i \in [N]}$, resulting in the K principal axis of deformations with the initial velocity field $(G_0, \alpha_i^{pc})_{j \in [K]}$.

école — — — — — — — — — — — — — — — — — — —		
normale —		
supérieure — — —	universite	K
paris—saclay——	PARIS-SACLAY	G

Benchmark on classification task on 15 UCR/UEA datasets: Robustness to irregular sampling, comparison with state-of-the-art in deep learning.

Comparison of average f1score (macro) and ranks as the sample dropping rate increases. **First** & <u>second</u> best performers. TS-LDDMM is the best performer on three out of four dropping rates.

Methods	Regular		30 % dropped		50 % dropped		70 % dropped	
Methous	F1-score	Rank	F1-score	Rank	F1-score	Rank	F1-score	Rank
RNN (1999)	0.64 ± 0.21	6.2	0.53 ± 0.23	6.6	0.48 ± 0.21	7.2	0.44 ± 0.21	6.07
LSTM (1997)	0.61 ± 0.29	6.0	0.57 ± 0.29	6.27	0.53 ± 0.25	6.07	0.51 ± 0.29	5.27
GRU (2014)	0.71 ± 0.26	4.2	0.68 ± 0.28	4.27	0.66 ± 0.28	3.73	0.59 ± 0.28	<u>3.67</u>
MTAN (2021)	0.59 ± 0.28	7.13	0.58 ± 0.28	5.8	0.54 ± 0.29	5.33	$\overline{0.51\pm0.28}$	5.0
MIAM (2022)	0.48 ± 0.35	6.93	0.42 ± 0.33	8.27	0.47 ± 0.31	6.93	0.35 ± 0.31	7.6
ODE-LSTM (2020)	0.63 ± 0.24	6.0	0.57 ± 0.25	6.53	0.51 ± 0.24	7.27	0.45 ± 0.23	6.73
Neural SDE (2019)	0.48 ± 0.28	7.67	0.47 ± 0.26	7.47	0.45 ± 0.27	7.13	0.45 ± 0.25	6.0
Neural LNSDE (2024)	0.7 ± 0.27	<u>3.87</u>	0.68 ± 0.29	<u>4.0</u>	0.67 ± 0.25	<u>3.53</u>	0.66 ± 0.23	2.47
LDDMM (2008)	0.72 ± 0.2	4.53	0.7 ± 0.21	4.2	$\overline{0.57\pm0.25}$	5.0	0.4 ± 0.25	7.13
TS-LDDMM (ours)	0.83 ± 0.18	2.93	$\overline{0.8\pm0.18}$	2.07	0.7 ± 0.26	3.33	0.51 ± 0.27	5.67

UNIVERSITE PARIS-SACLAY

école-

normale-

supérieure –

paris-saclay-

Benchmark on classification task on 15 UCR/UEA datasets Regular sampling, comparison with state-of-the-art in Functional Data Analysis.

Comparison of average f1score (macro) between methods from shape analysis and functional data analysis. **First** & <u>second</u> best performers.

	Dataset	Shape-FPCA (2024)	TCLR (2024)	LDDMM (2008)	TS-LDDMM (ours)
Univariate	ArrowHead	0.18	0.75	0.84	0.91
	BME	0.16	1.00	0.82	1.00
	ECG200	0.40	0.67	0.81	<u>0.79</u>
	FacesUCR	0.08	0.73	0.69	0.86
	GunPoint	0.93	0.97	0.83	1.00
	PhalangesOutlinesCorrect	0.39	0.63	0.53	0.52
	Trace	0.55	<u>1.00</u>	0.46	1.00
Multivariate	ArticularyWordRecognition	—	_	0.98	1.00
	Cricket	—	—	<u>0.77</u>	0.93
	ERing	—	—	<u>0.95</u>	0.98
	Handwriting	—	—	0.22	0.44
	Libras	—	—	<u>0.56</u>	0.60
	NATOPS	—	—	0.82	0.82
	RacketSports	—	—	0.83	<u>0.79</u>
	UWaveGestureLibrary	_	—	<u>0.72</u>	0.81

UNIVERSITE PARIS-SACLAY

