

DI I methods	Mini-b.	Miyun	Data	Exp.Mov	Match		Main assumption	
I LL methods	purif.	wiixup	augment.	Average	DA	DM		
PRODEN [25]	$\overline{\checkmark}$	×	×	×	X	\checkmark	DNNs learn pat	
CC [12]	\checkmark	×	×	×	X	×	PLs are generat	
LWC [37]	\checkmark	×	×	×	\times	\checkmark	PLs are class-de	
PiCO [34]	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	Same class repr	
DPLL [38]	\checkmark	×	\checkmark	×	\checkmark	×	Input is invarier	
SoLar [33]	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	High-confid. sa	
PaPi [40]	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Same class repr	
CroSel [30]	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Stable high-con	

What Makes Partial-Label Learning Algorithms Effective?

Jiaqi Lv, Yangfan Liu, Shiyu Xia, Ning Xu, Miao Xu, Gang Niu, Min-Ling Zhang, Masashi Sugiyama, Xin Geng

Observation and Answer 3

Table 1: Conceptual and empirical comparisons (%) of various simplifications of DPLL. \checkmark/\times indicates whether a technique is used.

Methods	Mini-b. purif.	ABS loss	Data augment.	DA	FMN 0.3	NIST 0.7	CIFA 0.05	R-100 0.1	mini-I.Net insdep.
Eq. 4+6 DPLL	✓	\checkmark	\checkmark	\checkmark	93.82	92.68	76.81	75.93	52.22
Eq. 4+7	\checkmark	\checkmark	\checkmark	\checkmark	93.80	92.44	79.35	78.85	53.40
Eq. 8+6	\checkmark	\checkmark	\checkmark	\checkmark	93.49	92.19	79.75	78.87	53.78
Eq. 8+7	\checkmark	\checkmark	\checkmark	\checkmark	93.57	92.20	79.53	78.85	54.09
Eq. 6	×	\checkmark	\checkmark	×	93.58	92.12	76.96	75.94	44.69
Eq. 8 DASM	\checkmark	\times	\checkmark	\checkmark	93.89	92.85	79.70	79.62	54.71
DASM-H	×	×	\checkmark	\checkmark	93.86	92.37	78.25	33.22	34.59
DASM-S	×	×	\checkmark	\checkmark	93.28	90.75	78.65	76.22	36.71
DASM-E	×	×	\checkmark	\times	93.80	92.35	79.30	79.11	53.44
SASM	\checkmark	\times	\checkmark	\times	93.83	92.18	79.38	78.19	55.45
DASM w/o.aug	\checkmark	×	×	\checkmark	90.86	89.60	60.18	56.39	30.85

- contributing to success
- iterations:

Observation 3: By dissecting SOTA PLL algorithms with quite different technical routes, we find the common elements

Mini-batch PL purification is a minimal design principles in PLL

Mini-batch PL purification is a process where for each mini-batch B selected at iteration t, the weights are updated such that the distinction among candidate labels' contributions increases over

 $w_{t+1}(x; f, S) = g$ (model's confidence for x based on current and previous iterations) with g being a strictly increasing function that increases the weight for more likely candidate labels according to the model's confidence

A Step Forward: StreamPurify