

Few-Shot Diffusion Models Escape the Curse of Dimensionality

Ruofeng Yang¹, Bo jiang¹, Cheng Chen², Ruinan Jin³⁴, Baoxiang Wang³⁴, Shuai Li^{1,*}

1. Shanghai Jiao Tong University 2. East China Normal University

3. The Chinese University of Hong Kong, Shenzhen 4. Vector Institute

Motivations

- Diffusion models become an important paradigm in generation.
- The customized requirements \rightarrow few-shot diffusion models
- Few-shot models uses only 5-10 images to fine-tune the pre-trained models.

Why few-shot diffusion models achieve great performance with a limited target data?

The Pretrained Phase of Diffusion Models

1. Large source data distribution: $\{X_{s,i}\}_{i=1}^{n_s} \sim q_0^s \in \mathbb{R}^D$

2. The pretrain score matching objective function

$$\min_{s \in S_{NN}} \hat{\mathcal{L}}_s(s) = \frac{1}{n_s(T-\delta)} \sum_{i=1}^{n_s} \int_{\delta}^{T} \mathbb{E}_{X_t | X_0 = X_{s,i}} \left[\|\nabla \log q_t^s(X_t | X_0) - s(X_t, t)\|_2^2 \right]$$

The Few-shot Diffusion Model

- 1. Limited target data distribution: $\{X_{ta,i}\}_{i=1}^{n_{ta}} \sim q_0^{ta} \in \mathbb{R}^D$
- 2. The few-shot objective function

$$\min_{s \in \mathcal{Q}_{NN}} \hat{\mathcal{L}}_{ta}(s) = \frac{1}{n_{ta}(T-\delta)} \sum_{i=1}^{n_{ta}} \int_{\delta}^{T} \mathbb{E}_{X_t | X_0 = X_{ta,i}} \left[\|\nabla \log q_t^{ta}(X_t | X_0) - s(X_t, t)\|_2^2 \right]$$

3. The function class Q_{NN} usually is a subset of S_{NN} (e.g. cross-attention [1] or text-embedding layers [2])

Current Results of Approximation Error

Many works foucs the requirement of data number n_s to approximate the score

$$\frac{1}{T-\delta} \int_{\delta}^{T} \mathbb{E}_{q_t^s} \left[\|\nabla \log q_t^s(X_t) - \hat{s}(X_t, t)\|_2^2 \right] dt$$

where \hat{s} is the minimizer of pretrain objective function.

- Without strong assumption, [3] achieve the minmax error bound $n_s^{-1/D}$.
- With a linear subspace $X_s = A_s z, z \in \mathbb{R}^d$, [4] achieve $n_s^{-2/d}$ error bound.

Though $d \ll D$ [5], the results is heavly influenced by $d \rightarrow$

Trivially use current analysis achieve $n_{ta}^{-2/d}$ for few-shot models

Assumption

Assumption. The source and target data distribution admit linear low dimensional subspace and share the latent space $X_s = A_s z$ and $X_{ta} = A_{ta} z$, $z \in \mathbb{R}^d$.

- The common image datasets admit low-dimensional [5].
- Diffusion models can adaptively find the manifold of data [6].
- The shared latent or representation is a standard assumption for few-shot learning.

The Paradigm of Few-shot Models

• With the linear space assumption, $\nabla \log q_t$ is decomposed to (a) the latent score function

 $\nabla \log q_t^{LD}(\cdot)$ and (b) linear encoder, decoder A. \rightarrow Approximated by $V \in \mathbb{R}^{D \times d}$

$$\nabla \log q_t^s(X) = A_s \nabla \log q_t^{LD}(A_s^{\mathsf{T}}X) - \frac{1}{\sigma_t^2} (I_D - A_s A_s^{\mathsf{T}}) X$$

Shared the information of $\nabla \log q_t^{LD}(\cdot)$, approximated by NN f_{θ}

- The parameters of S_{NN} is (V, θ) . Let $(\hat{V}_s, \hat{\theta})$ be the minimizer of pretrain objective.
- The few-shot models freeze $\hat{\theta}$ and fine-tune V.

Let \hat{V}_{ta} be the minimizer of the few-shot objective function.

Main Results (Approximation Error)

Theorem 1 (Informal). With the above assumption, the approximation error of few-shot diffusion model is

$$\frac{1}{T-\delta} \int_{\delta}^{T} \mathbb{E}_{q_t^{ta}} \left[\left\| \nabla \log q_t^{ta}(X_t) - s_{\widehat{V}_{ta},\widehat{\theta}}(X_t, t) \right\|_2^2 \right] dt \le n_{ta}^{-\frac{1}{2}} + n_s^{-\frac{2}{d}}$$

Discussion

• The dependence of n_{ta} is independent $d \rightarrow$

The few-shot diffusion model Escape the Curse of Dimensionality

• Intuition: The highly nonlinear latent score function is approximated by $n_s^{-2/d}$

The few-shot phase only pays the approxiamtion error of linear matrix A_{ta}

The Real-world Requirement of n_{ta}

Dataset	CIFAR-10	CIFAR-100	CelebA	MS-COCO	ImageNet
Dataset Size	6×10^4	6×10^4	2×10^5	3.3×10^5	1.2×10^6
Latent Dimension	25	22	24	37	43
The Requirement of n_{ta}	6	8	8	5	5

- Given n_s , we require $n_{ta}^{-1/2} = n_s^{-2/d}$ to achieve the same error bound.
- 5-10 target images is enough for few shot diffusion models.

Main Results (Optimization)

Intuition: Prior of pre-trained model \rightarrow Simplied Optimization Problem

Theorem 2 (Informal). Assume Gaussian latent, the few-shot objective function has a closed-form minimizer, which (a) is equivalent to PCA and

(b)has the following property

$$\left\| \hat{V}_{ta} \hat{V}_{ta}^{\mathsf{T}} - A_{ta} A_{ta}^{\mathsf{T}} \right\| \leq \tilde{O} \left(\frac{1}{\sqrt{n_s}} + \frac{1}{n_{ta}} \right)$$

• Though the Gaussian latent introduce a better n_s , the dependence of n_{ta} is still better.

Real-world Experiments (10 Target Dataset Images)

- 10 target images with bald feature
- Since fine-tuning all parameters lose the prior information, it also suffers from large

 $n_{ta}^{-2/d}$ error and memorization phenomenon.

• Our few-shot diffusion model generate novel images with target feature.

Conclusion

• (Approximaiton) The few-shot diffusion models enjoys

$$n_{ta}^{-\frac{1}{2}} + n_s^{-\frac{2}{d}}$$
 bound instead of $n_{ta}^{-\frac{2}{d}}$

- (Optimizaiton) The few-shot models simplfy the optimizaiton problem and enjoy closed-form minimizer (under the Gaussian latent).
- Furture work
 - (Approximation) The analysis for nonlinear manifold
 - (Optimization) Extend to general latent

Thanks!

Q&A

References

- [1] Kumari, N., Zhang, B., Zhang, R., Shechtman, E., & Zhu, J. Y. (2023). Multi-concept customization of text-toimage diffusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 1931-1941).
- [2] Gal, R., Alaluf, Y., Atzmon, Y., Patashnik, O., Bermano, A. H., Chechik, G., & Cohen-Or, D. (2022). An image is worth one word: Personalizing text-to-image generation using textual inversion. arXiv preprint arXiv:2208.01618.
- [3] Oko, K., Akiyama, S., & Suzuki, T. (2023, July). Diffusion models are minimax optimal distribution estimators. In International Conference on Machine Learning (pp. 26517-26582). PMLR.
- [4] Chen, M., Huang, K., Zhao, T., & Wang, M. (2023, July). Score approximation, estimation and distribution recovery of diffusion models on low-dimensional data. In International Conference on Machine Learning (pp. 4672-4712). PMLR.
- [5] Pope, P., Zhu, C., Abdelkader, A., Goldblum, M., & Goldstein, T. (2021). The intrinsic dimension of images and its impact on learning. arXiv preprint arXiv:2104.08894.
- [6] Tang, R., & Yang, Y. (2024, April). Adaptivity of diffusion models to manifold structures. In International Conference on Artificial Intelligence and Statistics (pp. 1648-1656). PMLR.