

REDUCR: Robust Data Downsampling using Class Priority Reweighting

William Bankes, George Hughes, Ilija Bogunovic* and Zi Wang*

Overview

Goal: Train a model on a large streamed dataset.

Problem: Downsample the data to a manageable size whilst maintaining model performance.

Challenge: Downsampling datasets with class imbalance can lead to poor worst-class generalisation. Excerbated by distributional shift.

Solution: REDUCR downsamples data in a robust manner to improve model performance under class imbalance and distributional shift.

Formal Problem Setting

• Vanilla data downsampling:

$$D_T = \arg \max_{D \subset \mathcal{D}} \log p(y_{ho} | x_{ho}, D)$$

Likelihood of the holdout dataset

• <u>Robust</u> data downsampling:

• This problem is NP hard

$$D_T = \arg \max_{D \subset D} \min_{c \in C} \log p(y_{ho}^{(c)} | x_{ho}^{(c)}, D).$$
Likelihood of the worst-class in the holdout dataset

Our Solution: REDUCR

1. Robust online batch selection – suitable for streamed data

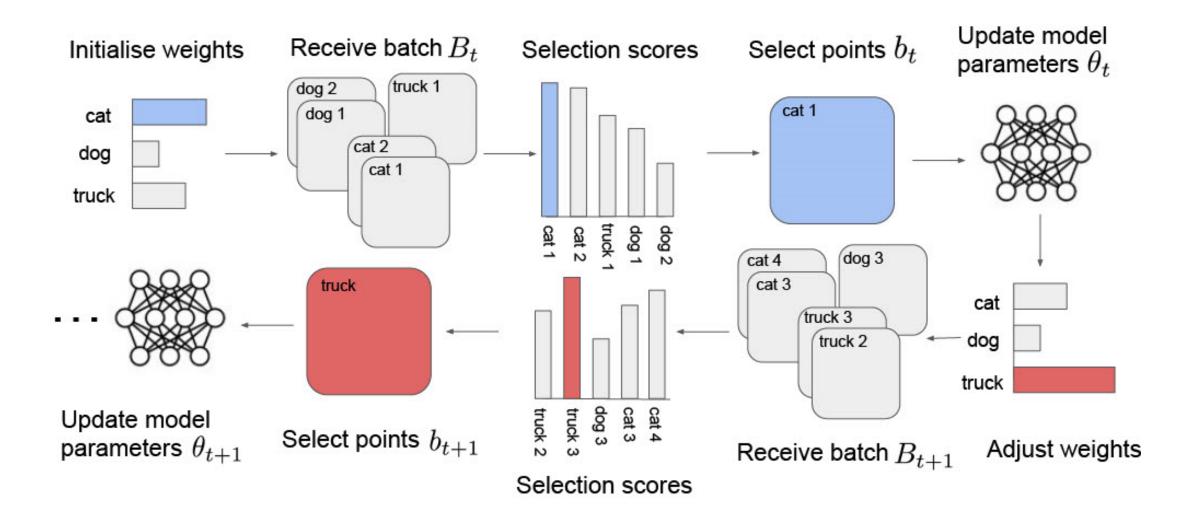
$$b_t = \arg \max_{\substack{b \subset B_T}} \min_{c \in C} \log p(y_{ho}^{(c)} | x_{ho}^{(c)}, D_t \cup b).$$

2. Solve the max min problem using a multiplicative weights algorithm

$$b_t = \arg \max_{b \subset B_T} \sum_{c=1}^{C} w_c \log p(y_{ho}^{(c)} | x_{ho}^{(c)}, D \cup b).$$

Class specific likelihood given new data

3. We design a novel selection scoring function which approximates the class specific likelihood given new data



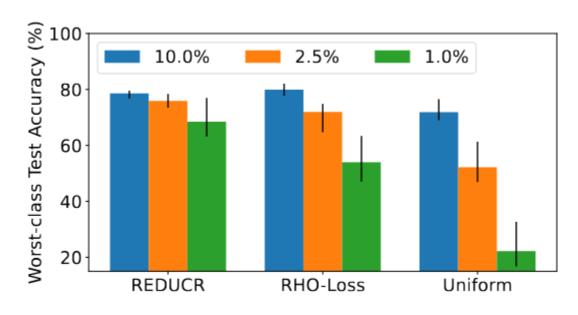
Results

- Experiments are run on a variety of NLP and vision classification tasks.
- REDUCR improves the worst-class accuracy when compared with relevant online batch selection baselines.
- REDUCR maintains average test accuracy despite prioritising the worst-class during training.

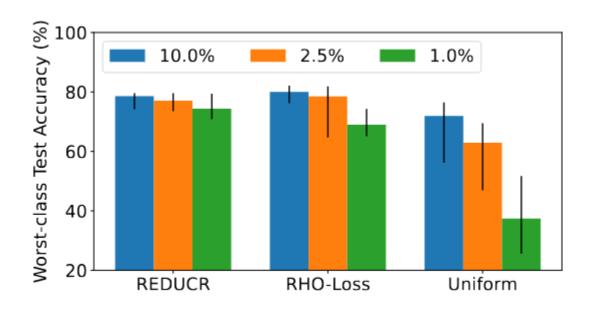
Dataset	Worst-Class Test Accuracy		Average Test Accuracy	
	Best Baseline	REDUCR	Best Baseline	REDUCR
CIFAR10 (10 runs)	78.80 ± 2.09	$\textbf{83.29} \pm \textbf{0.84}$	$\textbf{90.00} \pm \textbf{0.33}$	$\textbf{90.02} \pm \textbf{0.44}$
CINIC10 (10 runs)	69.39 ± 3.56	$\textbf{75.30} \pm \textbf{0.85}$	82.09 ± 0.30	$\textbf{81.68} \pm \textbf{0.47}$
CIFAR100 (5 runs)	17.59 ± 5.17	$\textbf{26.00} \pm \textbf{2.65}$	60.95 ± 0.64	62.21 ± 0.62
Clothing1M (5 runs)	40.37 ± 3.58	$\textbf{53.91} \pm \textbf{2.42}$	71.07 ± 0.46	$\textbf{72.69} \pm \textbf{0.42}$
MNLI (5 runs)	76.74 ± 0.93	$\textbf{79.45} \pm \textbf{0.39}$	$\textbf{80.89} \pm \textbf{0.31}$	$\textbf{80.28} \pm \textbf{0.33}$
QQP (5 runs)	79.96 ± 2.34	$\textbf{86.61} \pm \textbf{0.49}$	$\textbf{86.88} \pm \textbf{0.31}$	$\textbf{86.99} \pm \textbf{0.49}$

Further Results

REDUCR's performance remains consistent as specific classes are under-sampled whilst other online batch selection approaches deteriorates. Results shown on the CIFAR10 dataset.



(a) Under-sampling on class 3



(b) Under-sampling on class 5

Conclusion

- REDUCR Smart, robust data downsampling algorithm
- Empirically observe that REDUCR improves the worst-class accuracy without sacrificing average accuracy

Contact E-mail: william.bankes.21@ucl.ac.uk