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Motivation
• 


• We would like to avoid tokenization


- Less modeling complexity


- Less adversarial vulnerability 


- Better character-level performance


• Requires closing the performance gap



SpaceByte Model
• Insert large transformer blocks after “spacelike” characters


- spacelike ~ not a letter or number
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Scaling Analysis
• SpaceByte performs slightly better than subword models!
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Comparison with Other Works
• SpaceByte is competitive with subword Transformer and MambaByte
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Conclusion
• We introduce SpaceByte:


- A multi-scale transformer architecture


- Models byte-level language (rather than tokens) w/o performance penalty


• Limitations and future work:


- Languages that don’t use space characters (e.g. Chinese)?


- Batched inference is more complicated


- Multiscale modeling at larger scales?


‣ E.g. sentence-level rather than world-level
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