
SpaceByte:
Towards Deleting Tokenization
from Large Language Modeling

Kevin Slagle

Rice University

(now at Magic)

Dec 11, 2024

Motivation
•

1018

training FLOPs

1019
training FLOPs

arXiv dataset

Motivation
•

• We would like to avoid tokenization

- Less modeling complexity

- Less adversarial vulnerability

- Better character-level performance

• Requires closing the performance gap

SpaceByte Model
• Insert large transformer blocks after “spacelike” characters

- spacelike ~ not a letter or number

_ s p a c e _ i s _ _a l l

_ ys p a c e _ i s _ a l l

embedding

local
(1)L ⨉ local transformer blocks

local
(2)L ⨉ local transformer blocks

globalL ⨉ global transformer blocks

de-embedding

SpaceByte Model
• Insert large transformer blocks after “spacelike” characters

spacelike

_ s p a c e _ i s _ _a l l

_ ys p a c e _ i s _ a l l

embedding

local
(1)L ⨉ local transformer blocks

local
(2)L ⨉ local transformer blocks

globalL ⨉ global transformer blocks

de-embedding

large blocks here

Scaling Analysis
• SpaceByte performs slightly better than subword models!

1018

training FLOPs

arXiv dataset

1019
training FLOPs

Comparison with Other Works
• SpaceByte is competitive with subword Transformer and MambaByte

6.5x1019 training FLOPs

Conclusion
• We introduce SpaceByte:

- A multi-scale transformer architecture

- Models byte-level language (rather than tokens) w/o performance penalty

• Limitations and future work:

- Languages that don’t use space characters (e.g. Chinese)?

- Batched inference is more complicated

- Multiscale modeling at larger scales?

‣ E.g. sentence-level rather than world-level

_ s p a c e _ i s _ _a l l

_ ys p a c e _ i s _ a l l

embedding

local
(1)L ⨉ local transformer blocks

local
(2)L ⨉ local transformer blocks

globalL ⨉ global transformer blocks

de-embedding

