

RectifID: Personalizing Rectified Flow with Anchored Classifier Guidance

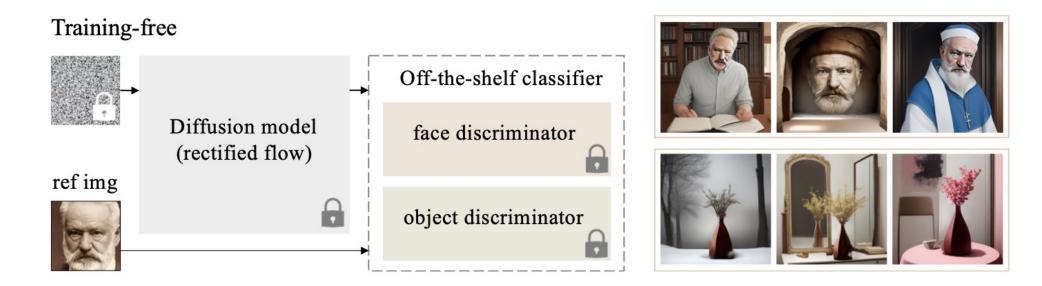
Zhicheng Sun¹, Zhenhao Yang³, Yang Jin¹, Haozhe Chi¹, Kun Xu², Kun Xu², Liwei Chen², Hao Jiang¹, Yang Song, Kun Gai², Yadong Mu¹


> ¹Peking University, ²Kuaishou Technology, ³University of Electronic Science and Technology of China

Introduction

Problem Description

- Generate identity-preserving images from user-provided reference image.
- Challenges: 1) controllability: the denoising objective is too weak to control subject identity.
 2) flexibility: existing models except GPT-40 cannot handle more general scenarios.



GPT-40

Introduction

Motivation

- We advocate a training-free approach that utilizes the guidance of a pre-trained classifier without extra training of the generative model.
- It can be flexibly applied to various tasks by plug-and-play combination with classifiers.

Method

Preliminary: Classifier Guidance

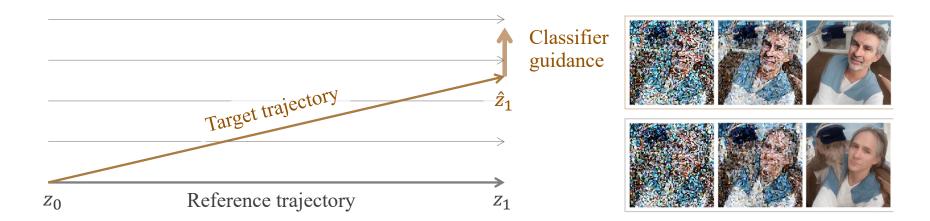
• Consider an ODE-based diffusion model that learns a velocity field from noise z_0 to data z_1 :

$$d\boldsymbol{z}_t = \boldsymbol{v}(\boldsymbol{z}_t, t) dt.$$

• It can be controlled at test-time by adding a classifier gradient term:

$$\hat{\boldsymbol{v}}(\boldsymbol{z}_t, t) = \boldsymbol{v}(\boldsymbol{z}_t, t) + s \cdot \nabla_{\boldsymbol{z}_t} \log p(c|\boldsymbol{z}_t).$$

Limitations


- It relies on a special classifier trained on noisy images z_t , and therefore can't reuse existing classifiers trained on clean images z_1 .
- Existing approximation techniques require a high number of iterations (100+).

Method

Classifier Guidance for Rectified Flow

- Using rectified flow (which is trained to be straight), training-free guidance can be cast to a fixed-point problem: $\boldsymbol{z}_1 = \boldsymbol{z}_0 + \hat{\boldsymbol{v}}(\boldsymbol{z}_1, 1) \\ = \boldsymbol{z}_0 + \boldsymbol{v}(\boldsymbol{z}_1, 1) + s \cdot \nabla_{\boldsymbol{z}_1} \log p(c|\boldsymbol{z}_1).$
- We further introduce a reference trajectory to improve the stability of its solving process:

$$\hat{\boldsymbol{z}}_1 = \boldsymbol{z}_1 + s \cdot [
abla_{\boldsymbol{z}_0} \boldsymbol{z}_1] \nabla_{\hat{\boldsymbol{z}}_1} \log p(c|\hat{\boldsymbol{z}}_1).$$

Method

Implementation

• The derived method is implemented for a practical class of rectified flow assumed to be piecewise straight.

Algorithm 1 Anchored Classifier Guidance	
Input: rectified flow v, classifier $p(c \cdot)$, sampling steps K, iterations N.	
Initialize reference trajectory $\boldsymbol{z}_{t_k}^{[0]}$ from \boldsymbol{v} .	⊳ Eq. (13)
Initialize target trajectory $\hat{z}_{t_{k}}^{[0]} \leftarrow z_{t_{k}}^{[0]}$.	
for $i \leftarrow 0$ to $N-1$ do	
Update reference trajectory with predicted starting points $\boldsymbol{z}_{t_k}^{[i+1]}$.	⊳ Eq. <mark>(</mark> 15)
Update target trajectory $\hat{z}_{t_k}^{[i+1]}$ with classifier output $p(c \hat{z}_1^{[i]})$.	⊳ Eq. (16)
Output: target trajectory $\hat{z}_{t_k}^{[N]}$ subject to condition c.	

• Combined with face (ArcFace) or object discriminators (DINOv2), it supports personalization for human faces and more general objects,

$$p(c|\hat{oldsymbol{z}}_1^{[i]}) = ext{sim}\left(f \circ g(\hat{oldsymbol{z}}_1^{[i]}), f \circ g(oldsymbol{z}_{ ext{ref}})
ight).$$

Personalized Generation Results

RectifID achieves better results than training-based approaches in a reasonable inference time.

Method	Base model	Training	Identity \uparrow	Prompt ↑	Time ↓
Textual Inversion (Gal et al., 2023)	SD 2.1	-	0.2115	0.2498	6331
DreamBooth (Ruiz et al., 2023a)	SD 2.1	-	0.2053	0.3015	623
NeTI (Alaluf et al., 2023)	SD 1.4	-	0.3789	0.2325	1527
Celeb Basis (Yuan et al., 2023)	SD 1.4	-	0.2070	0.2683	140
Cross Initialtion (Pang et al., 2024)	SD 2.1	-	0.2517	0.2859	346
IP-Adapter (Ye et al., 2023)	SD 1.5	10M	0.4778	0.2627	2
PhotoMaker (Li et al., 2024)	SDXL	112K	0.2271	<u>0.3079</u>	<u>4</u>
InstantID (Wang et al., 2024)	SDXL	60M	<u>0.5806</u>	0.3071	6
RectifID (20 iterations)	SD 1.5	-	0.4860	0.2995	9
RectifID (100 iterations)	SD 1.5	-	0.5930	0.2933	46
RectifID (20 iterations)	SD 2.1	-	0.5034	0.3151	20

Personalized Generation Results

Input

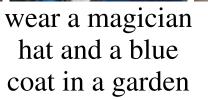
cave mural

piloting a fighter jet

wear a magician hat and a blue coat in a garden

driving a car

pencil drawing



Input

as an amazon warrior

in a cowboy hat

wearing a hat

swimming

watercolor painting

pencil drawing

Personalized Generation Results

Input

graduating after wear a magician hat and a blue finishing PhD coat in a garden

Queen

wearing headphones

pencil drawing

in a police outfit

holding roses wear a magician in front of the hat and a blue Eiffel Tower coat in a garden

reading on the train

buckled in his sipping coffee seat on a plane at a cafe

Input

stained glass painting in window Van Gogh style

watercolor painting

driving a car

concert poster

colorful mural buckled in his on a street wall seat on a plane

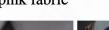
More Customization Results

Input

Input

Input

Input


in a firefighter on pink fabric

wearing a

santa hat

wearing a

santa hat

outfit

in a purple wizard outfit

in a purple

wizard outfit

wearing a

rainbow scarf

in front of a mountain

in the snow

wearing a yellow shirt

in the snow

rainbow scarf

in a police outfit

wearing a

wet

outfit

wearing a in a firefighter santa hat outfit

in a firefighter in a purple wizard outfit

outfit

in the jungle

in a firefighter

outfit

Generalization

(a) Segmentation map

(b) Style transfer

Thanks for listening

Code is available at https://github.com/feifeiobama/RectifID