Oracle Efficient Reinforcement Learning for Max Value Ensembles

University of Pennsylvania

Marcel Hussing, Michael Kearns, Aaron Roth, Sikata Sengupta, Jessica Sorrell

Motivation

Motivation

[https://uwaterloo.ca/scholar/ajlobbez/reinforcement-learning-robo](https://uwaterloo.ca/scholar/ajlobbez/reinforcement-learning-robotic-control) [tic-control](https://uwaterloo.ca/scholar/ajlobbez/reinforcement-learning-robotic-control)

Warm Up (Known Value Functions)

Intuition

Intuition

"The Problem of RL" → Batch ERM

ERM Oracle Access

● Regression oracle access insufficient to learn optimal policy [Golowich, Moitra, Rohatgi, 2024, Exploration is Harder than Prediction…]

(a) MDP in which two policies going either only left or right obtain low return but max-following them would be optimal.

(b) MDP with $A = \{ \text{right}, \text{left}, \text{up} \}$ where starting from s_2 , max-following is far worse than optimal and starting from s_0 , different max-following policies have different values (depending on tie-breaking).

(a) MDP where small value approximation errors at s_0 hinder max-following. Arrows representing transition dynamics are color-coded red to indicate actions taken by π^0 and blue to indicate actions taken by π^1 .

(b) MDP where the max-following value function is piecewise linear, but constituent policy's values are affine functions of the state for fixed actions.

Approximate Tie-Breaking Policy Class

Approximate max-following policies: We define a set of β -good policies at state $s \in \mathcal{S}$ and time $h \in [H]$, selected from a set Π^k , as follows.

$$
T_{\beta,h}(s) = \{ \pi \in \Pi^k : V_h^{\pi}(s) \ge \max_{k \in [K]} V_h^k(s) - \beta \}.
$$

Then we define the set of approximate max-following policies for Π^k to be

$$
\Pi_{\beta}^{k^*} = \{ \pi : \forall h \in [H], \forall s \in \mathcal{S}, \pi_h(s) = \pi_h^t(s) \text{ for some } \pi^t \in T_{\beta, h}(s) \}.
$$

Approximate Tie-Breaking Policy Class (Π $_{\beta}^{\mathsf{K}^*}$ **)**

 π_h^3

(b) MDP with $A = \{ \text{right}, \text{left}, \text{up} \}$ where starting from s_2 , max-following is far worse than optimal and starting from s_0 , different max-following policies have different values (depending on tie-breaking).

Algorithm

Algorithm 1 Maxiteration ${}^{\mathcal{M}}_{\alpha}(\Pi^k)$ 1: for $h \in [H]$ do for $k \in [K]$ do $2:$ let μ_h be the distribution sampled by executing the following procedure: $3:$ $4:$ sample a starting state $s_0 \sim \mu_0$ for $i \in [h]$ do $5:$ $s_{i+1} \sim P(\ \cdot \ | \ s_i, \pi^{\text{argmax}_k \hat{V}_i^k(s_i)}(s_i))$ $6:$ end for $7:$ 8: output s_h $\hat{V}_h^k \leftarrow \mathcal{O}_\alpha^k(\mu_h, h)$ $9:$ end for $10:$ $11:$ end for 12: return policy $\hat{\pi} = {\hat{\pi}_h}_{h \in [H]}$ where $\hat{\pi}_h(s) = \pi^{\operatorname{argmax}_{k \in [K]} \hat{V}_h^k(s)}(s)$

Theoretical Results

 $O(\epsilon)$ {

 $O(\epsilon)$ {

Value of π' from MaxIteration

Value of worst π from $\Pi^{~k^*}_{\beta}$

Values of base policy class Π^k

Theorem 3.1

[Theorem 3.1: Maxiteration provides algorithm competitive with worst-case of benchmark class] For any $\varepsilon \in (0,1]$, any MDP M with starting state distribution μ_0 , any episode length H, and any K policies Π^k defined on M, let $\alpha \in \Theta(\frac{\varepsilon^3}{KH^4})$ and $\beta \in \Theta(\frac{\varepsilon}{H})$. Then Maxiteration ${}_{\alpha}^{\mathcal{M}}(\Pi^k)$ makes $O(HK)$ oracle queries and outputs $\hat{\pi}$ such that

$$
\mathop{\mathbb{E}}_{s_0 \sim \mu_0} \left[V^{\hat{\pi}}(s_0) \right] \ge \min_{\pi \in \Pi_{\beta}^{k^*}} \mathop{\mathbb{E}}_{s_0 \sim \mu_0} \left[V^{\pi}(s_0) \right] - O(\varepsilon).
$$

Lemma 4.1

[Lemma 4.1: Worst approximate max-following policy competes with best fixed policy] For any $\varepsilon \in (0,1]$ and any episode length H, let $\beta \in \Theta(\frac{\varepsilon}{H})$. Then for any MDP M with starting state distribution μ_0 , and any K policies Π^k defined on M,

$$
\min_{\pi \in \Pi_{\beta}^{k^*}} \mathop{\mathbb{E}}_{s_0 \sim \mu_0} \left[V^{\hat{\pi}}(s_0) \right] \ge \max_{k \in [K]} \mathop{\mathbb{E}}_{s_0 \sim \mu_0} \left[V^k(s_0) \right] - O(\varepsilon).
$$

Experiments

(IIWA, box, no_obstacle, pick-and-place)

(Jaco, hollow_box, object_door, push)

(Gen3, plate, goal_wall, trash_can)

(Panda, dumbbell, object_wall, shelf)

2: Apx Max-Following Policy Class 1: Max-Iteration Algorithm (oracle-efficient)

3: Superior to base policy class (w.h.p.)

References

- 1. Ching-An Cheng, Andrey Kolobov, and Alekh Agarwal. Policy improvement via imitation of multiple oracles. Advances in Neural Information Processing Systems, 33:5587–5598, 2020.
- 2. Xuefeng Liu, Takuma Yoneda, Chaoqi Wang, Matthew Walter, and Yuxin Chen. Active policy improvement from multiple black-box oracles. In International Conference on Machine Learning, pages 22320–22337. PMLR, 2023.
- 3. André Barreto, Shaobo Hou, Diana Borsa, David Silver, and Doina Precup. Fast reinforcement learning with generalized policy updates. Proceedings of the National Academy of Sciences, 117 (48):30079–30087, 2020. doi: 10.1073/pnas.1907370117.
- 4. Noah Golowich, Ankur Moitra, and Dhruv Rohatgi. Exploration is harder than prediction: Cryptographically separating reinforcement learning from supervised learning. arXiv preprint arXiv:2404.03774, 2024.
- 5. Nataly Brukhim, Elad Hazan, and Karan Singh. A boosting approach to reinforcement learning. Advances in Neural Information Processing Systems, 35:33806–33817, 2022.
- 6. Jorge A. Mendez, Marcel Hussing, Meghna Gummadi, and Eric Eaton. Composuite: A compositional reinforcement learning benchmark. In 1st Conference on Lifelong Learning Agents, 2022.

Thank You!