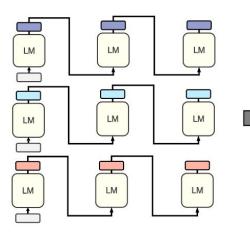
Superposed Decoding 😴

Ethan Shen NeurIPS 2024.

Alan Fan, Sarah M. Pratt, Jae Sung Park, Matthew Wallingford, Sham M. Kakade, Ari Holtzman, Ranjay Krishna, Ali Farhadi, Aditya Kusupati

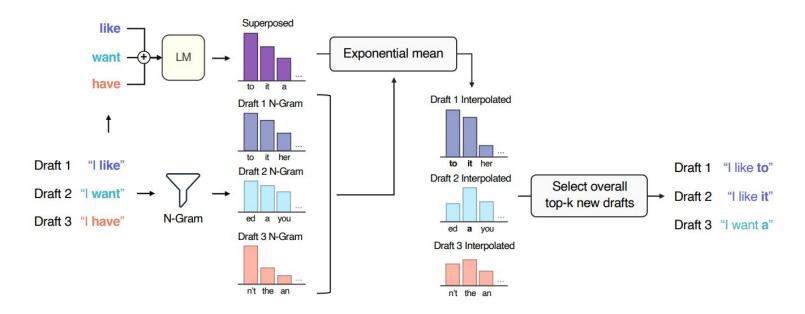
Drafting Scenarios

• Users often want multiple distinct outputs from LLMs



Current Approaches

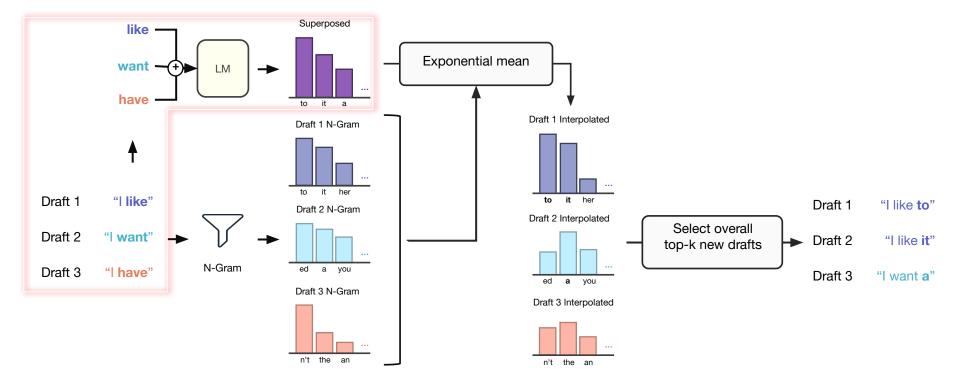
- Decoding Methods
 - Nucleus Sampling
 - Beam Search
 - Top-k Sampling
 - Greedy Decoding (Only one draft)
- Multiple inference passes (batch size = 1)


"I just arrived in Xalapa, Mexico - today was my first"

day of class. At Universidad Veracruz... day of the Rosenkranz School at the... day of orientation, and I could not wait to...

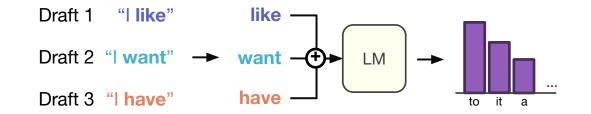
Superposed Decoding (SPD)

Idea: Linearly combine token embeddings to extend all *k* drafts with **one inference pass**

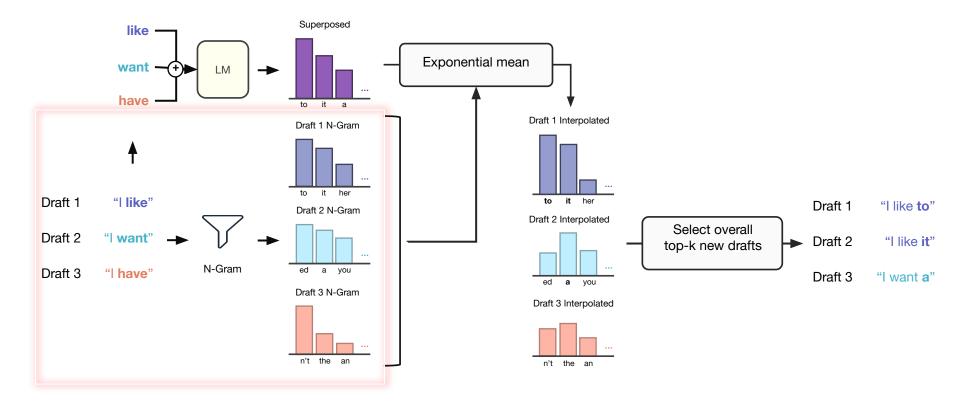

First Timestep

1.Let *x* denote token in vocabulary *V* and $M = (x_1, ..., x_m)$ an initial prefix of *m* tokens.

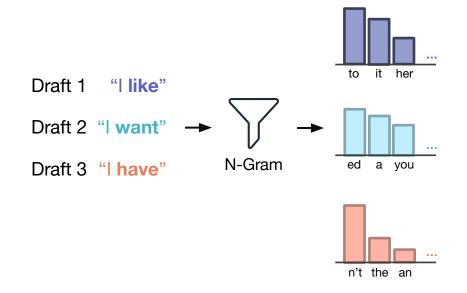
2.Grow initial drafts using model θ :


Draft 1	"" "	Draft 1 "I like"
Draft 2	"]" →	Draft 2 "I want"
Draft 3	66 3 3	Draft 3 "I have"

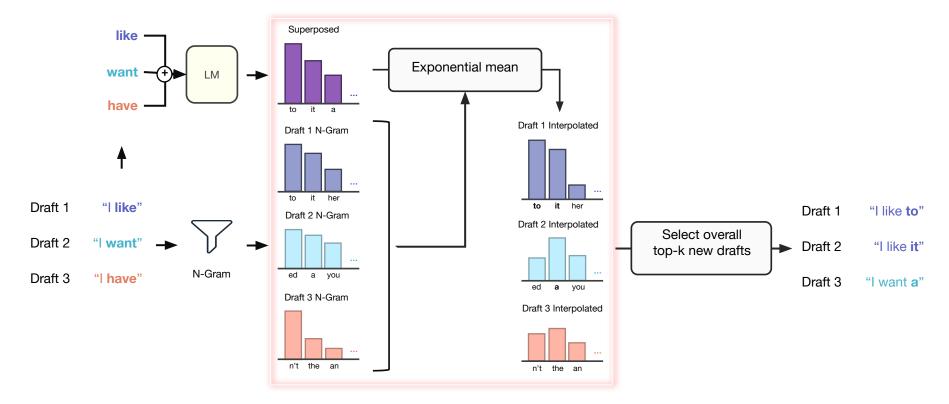
Step 1: Superposed Embedding Inference


Step 1: Superposed Embedding Inference

• Find weighted combination of the embeddings of each draft's most recent token.

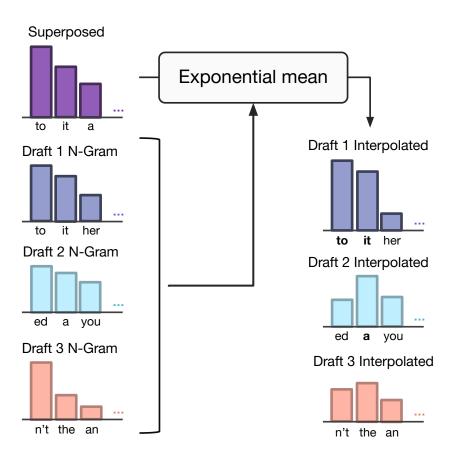

• Truncate the resulting distribution to only the top *k* tokens.

Step 2: N-Gram Distribution



Step 2: N-Gram Distribution

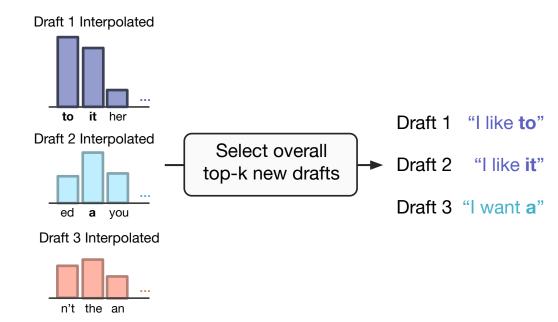
• Interpolate the next token distributions from a set of *n*-gram models ($n \in [2, 6]$)



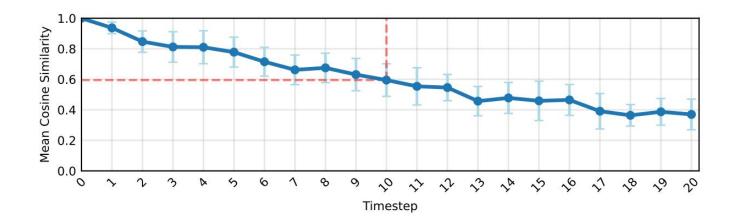
Step 3: Interpolation

Step 3: Interpolation

- Interpolate the N-Gram distributions with the LM distribution
- Draft-specific distributions



Step 4: Update Drafts


Step 4: Update Drafts

- 1. Next tokens form k^2 new draft options
- Rank using joint
 probability of tokens and
 drafts
- 3. Update draft store **Repeat!!!**

Why does Superposed Decoding work?

- Layer embeddings using Superposed Decoding linearly relate to those of Beam Search drafts
 - 10 randomly sampled batches of 10 prefixes each (100 total prefixes)
- High linearity up to 10 timesteps optimal generation length

Example #1

	Text
OpenWebText Prefix	When I worked as a scout for the Carolina Panthers in the
Nucleus Sampling	1990s, I would often
Superposed Decoding	1990s, I was always 1990s, I was a 1990s, I was responsible

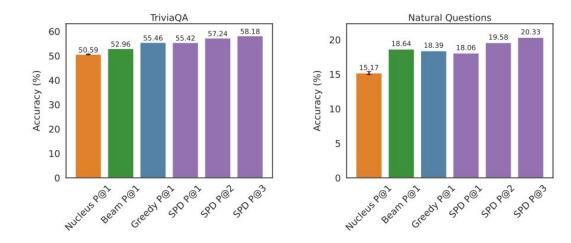
Example #2

	Text
OpenWebText Prefix	Over a century ago, the RMS Titanic's fate
Nucleus Sampling	was sealed when it struck an iceberg on
Superposed Decoding	was sealed when it struck an iceberg and was sealed when it hit an iceberg and was sealed when it hit an iceberg on

III. Results

Experimental Setup

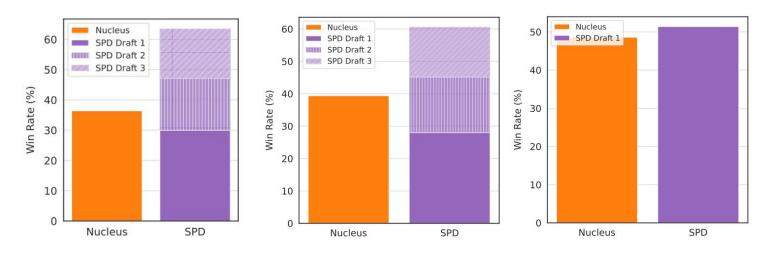
- Implement on Llama-2-7B
- N-Gram Models constructed using 200M tokens from RedPajama


Coherency

- Test on OpenWebText (10 tokens generated)
- Expect at least one SPD draft to be equal to Nucleus Sampling & others come free

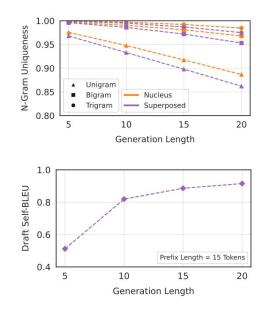
	Nucleus	Beam/Greedy	N-Gram	Superposed Decoding			
Draft #	-	-	-	1	2	3	Best
Avg Perplexity	5.17	3.77	152.75	5.03	7.97	10.05	4.63

Accuracy


- Tested on TriviaQA and Natural Questions
- SPD gives more drafts @ same compute
- Extra drafts increase likelihood of factually accurate generations

Human Evaluation

Three Surveys:


- 1. Constant Compute: 3 SPD vs 1 Nucleus (707 prefixes)
- 2. Unequal Compute: 3 SPD vs 2 Nucleus (100 prefixes)
- 3. Equal Number: 1 SPD vs 1 Nucleus (100 prefixes)

Ablations

Superposed Decoding:

- Does not suffer degeneration
- Increases diversity with smaller generation length
- Flawlessly extends to Mistral 7B

	Nucleus	Superposed Decoding							
Draft #	-	1	2	3	Best				
Avg Perplexity	11.42	11.34	12.74	13.63	10.87				

Complementary Benefits

- Superposed Decoding's benefits are *completely complementary* to other decoding methods
- SPD offers local search at no extra cost
 - Freely expands global search (Nucleus Sampling) or other local search (Beam Search)

Prefix	Nucleus Sampling (k = 3)	3 x Superposed Decoding
Melbourne is	Melbourne is a great city, with Melbourne is a city of many different Melbourne is the capital city of Victoria	Melbourne is a great city, with a lot of things Melbourne is a great city, with a lot to things Melbourne is a great city, with a lot of history Melbourne is a city of many different cultures and relig Melbourne is a city of many different cultures, relig Melbourne is a city of many different cultures and languages Melbourne is the capital city of Victoria, Australia. It Melbourne is the capital city of Victoria, Australia. It Melbourne is the capital city of Victoria, Australia. It

Test-Time Compute Scaling

- Repeated sampling (Brown et al., 2024) -> increased samples improve performance
- Extend Nucleus Sampling drafts with 2 or 3 SPD drafts free of cost

TriviaQA

Compute (k)	1	10	20	30	40	50	60	70	80	90	100
NS	51.04	68.75	70.31	71.87	72.92	74.48	74.74	75.26	75.78	76.30	76.56
NS + 2 SPD	51.30	68.75	70.57	72.66	74.74	75.78	76.30	76.82	78.39	79.17	79.43
NS + 3 SPD	51.82	70.57	74.22	75.52	77.34	77.87	78.39	78.65	79.17	79.43	79.95

Natural Questions

Compute (k)	1	10	20	30	40	50	60	70	80	90	100
NS	14.32	32.55	36.98	38.54	40.36	41.15	41.67	41.93	42.19	42.71	42.97
NS + 2 SPD	15.36	31.25	34.90	38.02	39.84	41.41	41.67	42.45	43.75	43.75	43.75
NS + 3 SPD	15.63	31.25	36.98	39.06	41.15	42.71	43.75	43.75	44.27	44.79	45.57

Takeaways

Benefits:

- Coherent and human preferred
- Factual
- Increase effective batch size
- Inference compute scaling

Applications:

- Tabnine
- Microsoft Copilot
- ...and more!!!

