Accelerating Blockwise Parallel Language Models with Draft Refinement

Taehyeon Kim¹, Ananda Theertha Suresh², Kishore A Papineni², Michael Riley², Sanjiv Kumar², Adrian Benton² ¹KAIST AI (Work done while at Google Research) ²Google Research NeurIPS 2024

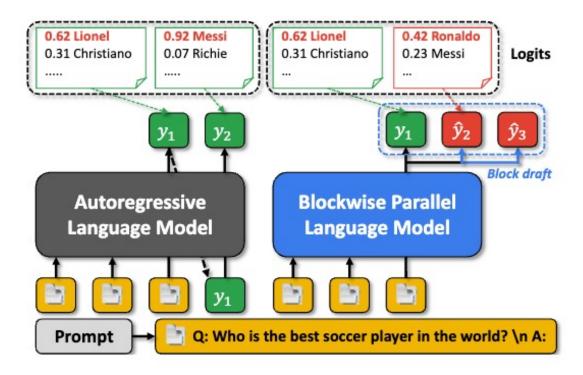
- Decode faster from autoregressive LLMs: 2X 3X.
- Lossless quality of generation: no changes on the target model.
- Integrates with Medusa¹ for faster results.

Cai, Tianle, et al. "Medusa: Simple LLM Inference Acceleration Framework with Multiple Decoding Heads." Forty-first International Conference on Machine Learning

 Here, neural rescoring firstly refines the block draft, and then tree-attention is applied over the refined block draft.

What is Blockwise Parallel Language Model...

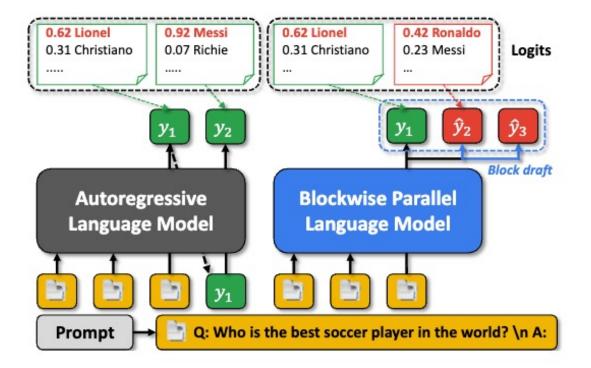
- Blockwise parallel LM
 - Decode K tokens (block) in non-autoregressive manner with a set of prediction heads.
 - Use Blockwise Parallel Decoding (BPD)
 - Acceleration of text generation.
 - Ancestor of speculative decoding.
 - (1) Block draft (2) Verify (3) Accept
 - The more coherent block, the higher acceptance rate. Thus, faster generation.



For Blockwise Parallel Language Models...

• Memory-bound scenario.

• Can we somehow gain more from the block?



Observation

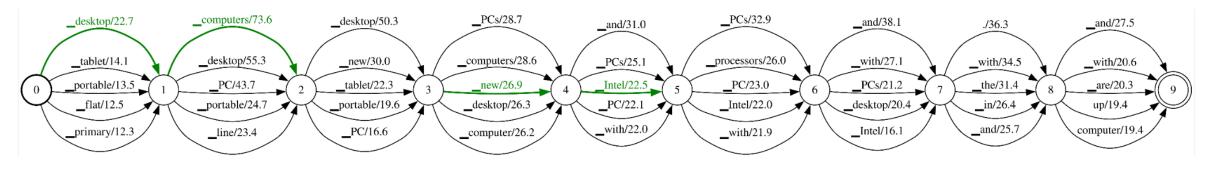
• Some tokens in the block are (1) repetitive or (2) incoherent (e.g., Lionel Ronaldo).

• A blockwise parallel LM produces drafts where 20.0-75.5% of consecutive tokens are repeated.

Observation

- Thought
 - 1. Represent the top-k tokens from the block drafter as a lattice.
 - 2. Rescore the lattice using an autoregressive models to improve the draft.

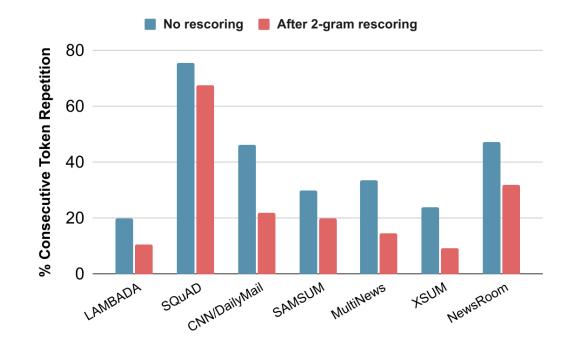
of prediction heads



Observation

• Thought

- 1. Represent the top-k tokens from the block drafter as a lattice.
- 2. Rescore the lattice using an autoregressive models to improve the draft.

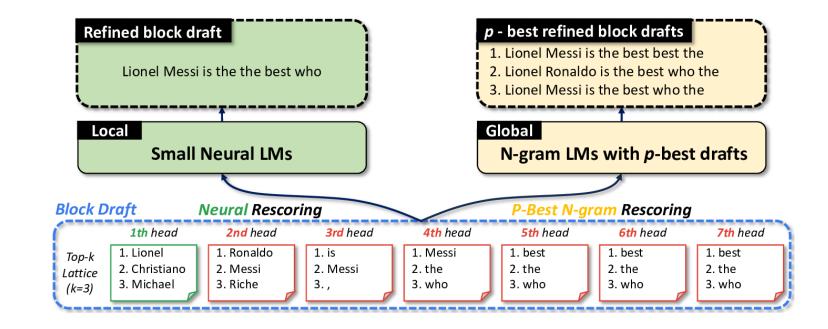


Contribution

- Use of small language models for draft refinement.
- Accelerating BPD with refined block by increasing acceptance rate.

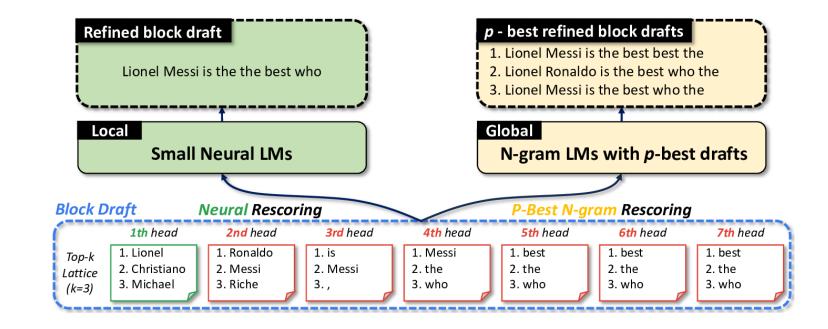
Rescoring Methods

- (Local) Neural Rescoring
 - Greedily rescore the lattice with (61M parameter) decoder-only transformer
 - Pros: Ensure local fluency / Cons: Latency scales with the number of draft tokens.



Rescoring Methods

- (Global) N-gram Rescoring
 - Greedily rescore the lattice with C4-trained n-gram model (~100M subword n-grams)
 - Pros: Extract and rescore multiple drafts quickly / Cons: Model itself is weak.

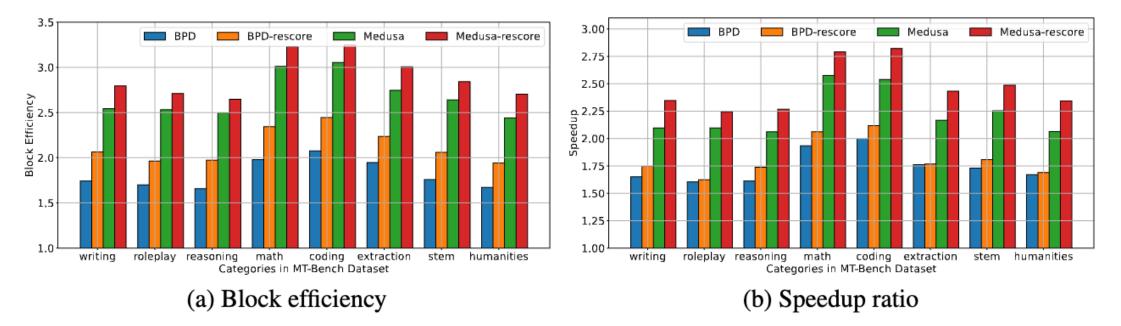


- Block efficiency represents the average number of tokens decoded per serial call.
- Simple rescoring works well on 1.5B LM, but depends on the task.

Task	Dataset	Baseline BPD	Local rescoring neural-61M BPD	4-gram BPD	Global rescoring 16-best 0-gram BPD	16-best 4-gram BPD	Oracle (k=16)
LM	LAMBADA	3.12	3.08 (-1.28%) ●	3.05 (-2.24%) •	3.23 (+3.53%) •	<u>3.29 (+5.45%)</u>	3.67
QA	SQuAD V1	2.08	2.10 (+0.96%) •	2.07 (-0.48%) ●	2.18 (+4.85%) ●	<u>2.22 (+6.87%)</u> ●	2.45
S-SUM	CNN/Daily SAMSUM	1.74 1.27	1.73 (-0.57%) ● 1.39 (+9.45%) ●	1.73 (-0.57%) ● 1.29 (+1.57%) ●	1.82 (+4.66%) • 1.37 (+7.87%) •	$\frac{1.83 (+5.41 \%)}{1.45 (+14.17 \%)} \bullet$	2.26 1.95
L-SUM	MultiNews XSUM NewsRoom	1.10 1.13 1.08	1.25 (+13.64%) ● 1.23 (+8.85%) ● 1.29 (+19.44%) ●	1.12 (+1.82%) ● 1.16 (+2.65%) ● 1.18 (+9.26%) ●	1.13 (+2.73%) • 1.18 (+4.42%) • 1.11 (+2.78%) •	1.22 (+10.91%) ● 1.26 (+11.50%) ● 1.31 (+21.30%) ●	1.43 1.55 1.50

- [Open LLM 13B] Speedup ratio relative to the standard autoregressive decoding on MT-Bench dataset when greedily decoding with Vicuna 13B.
- \bullet Simple neural rescoring further improves Medusa1 as well as BPD on

13B LLM.



Cai, Tianle, et al. "Medusa: Simple LLM Inference Acceleration Framework with Multiple Decoding Heads." Forty-first International Conference on Machine Learning

 Here, neural rescoring firstly refines the block draft, and then tree-attention is applied over the refined block draft.

Thank you!

Taehyeon Kim¹, Ananda Theertha Suresh², Kishore A Papineni², Michael Riley², Sanjiv Kumar², Adrian Benton² ¹ KAIST AI (Work done while at Google Research) ² Google Research

kimtaehyeon610@gmail.com

