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Motivation

Recently, the success of unsupervised learning and graph neural networks has demonstrated the importance 

of data structure information in improving model generalization.

Considering that the FR task can leverage large-scale training data, which intrinsically contains significant 

structure information. Thus, in this paper, we extend our interests on building a cutting-edge FR framework 

through exploiting such powerful and substantial structure information.

Existing studies on FR primarily focuses on 

constructing more discriminative face 

features by developing:

1) margin-based loss functions

2) powerful network architectures



Topological Data Analysis

Persistent Homology (PH) is a method in computational topology used to analyze and capture the underlying topological 

structure information of complex point clouds. 
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Novel Findings

We use Persistent Homology (PH) to investigate the evolution trend of structure information in existing FR 

framework and illustrate 3 interesting findings:

（i）As the amount of data increases, the topological structure of the input space 

becomes more and more complex.



Novel Findings

（ii）As the amount of data increases, the topological structure discrepancy between the input 

space and the latent space becomes increasingly larger.

（iii）As the depth of the network increases, the topological structure discrepancy becomes 

progressively smaller.



Methodology

In FR tasks with large-scale datasets, the structure of face data will be severely destroyed during training, 

which limits the generalization ability of FR models in practical application scenarios.

A fundamental idea is to align the structures of the input and latent spaces in order to maximize the 

preservation of the topological structure information of face data.



Perturbation-guided Topological Structure Alignment (PTSA)

To remedy this problem, we propose a Perturbation-guided Topological Structure Alignment (PTSA) strategy

that includes two mechanisms: Random Structure Perturbation (RSP) and Invariant Structure Alignment (ISA).

RSP introduces a data augmentation list

For each training sample, RSP will randomly 

select an data augmentation operation to 

perturb the sample in order to increases the 

structure diversity of the latent space.
We adopt ArcFace loss as the basic classification loss



Perturbation-guided Topological Structure Alignment (PTSA)

Ideally, no matter how the face image is perturbed, the 

position of the encoded face feature in the latent space 

should remain unchanged, and the topological structure 

of the perturbed latent space should also be consistent 

with the original input space.

During forward propagation, we can construct the Vietoris-Rips complexes for the original input space and the 

perturbed latent space. Then we can utilize persistent homology to analyze the topological structures of two 

complexes, and obtain their corresponding persistence diagrams and persistence pairing, respectively.

We choose to align the original input space with the perturbed latent space.



Structure Damage Estimation (SDE)

In practical FR scenarios, low-quality face samples, also known as "hard samples", are commonly included in 

the training set, which will disrupt the latent space’s topological structure and further hinder the alignment of 

structures.

To address this issue, we propose a novel hard sample mining strategy called Structure Damage Estimation 

(SDE) to identify hard samples with serious structure damage and guide them back to the reasonable 

positions during optimization.

Prediction Uncertainty:

To accurately select hard samples, we propose using a Gaussian-uniform mixture (GUM) model to model 

sample difficulty, which utilizes prediction entropy as the distribution variable.



Structure Damage Estimation (SDE)

Then the posterior probability that the sample to be hard (i.e., high-uncertainty) can be computed as follows:

Structure Damage Score (SDS):

Inspired by the Focal loss, we design a probability-aware scoring mechanism that combines prediction 

uncertainty and prediction accuracy to adaptively compute SDS for each sample.

By assigning higher scores to hard samples, the model is encouraged to focus more on learning these 

challenging samples, boosting the FR system’s generalization.



Model Optimization

The overall objective of TopoFR：



Experiments

For training, we employ three distinct datasets, namely MS1MV2 (5.8 Mimages, 85K identities ), Glint360K

(17M images, 360K identities), and WebFace42M (42.5M facial images, 2M identities).

For evaluation, we adopt LFW, AgeDB-30, CFP-FP, CPLFW, CALFW, IJB-C, and IJB-B as the benchmarks to 

test the performance of our models.

Datasets：

Backbones：

ResNet-50, ResNet-100, and ResNet-200.



Experiments

Results on LFW, CFP-FP, AgeDB-30, 

IJB-B and IJB-C：

(1) TopoFR's performance on easy benchmarks has 

nearly reached saturation and is significantly 

higher than that of compared methods.

(2) On IJB-B/C, TopoFR has achieved SOTA 

performance across different ResNet backbones. 

Notably, our R50-based TopoFR model even 

surpasses most R100-based competitors.



Code

Code and pre-trained models are available at:

https://github.com/modelscope/facechain/tree/main/face_module/TopoFR

https://github.com/modelscope/facechain/tree/main/face_module/TopoFR

