
Deep Homomorphism Network

Expressivity through stacking homomorphism layers

receptive field
(recognizable pattern)

Takanori Maehara & Hoang NT

Roku & UTokyo

NeurIPS 2024



Introduction 2

1-WL

scalable expressive

2-WL 3-WL

patterns
without
cycles real-world problems requires

linear complexity (scalibility) 
while having "some" high expressivity capability

 Our work is motivated by the complexity-expressivity trade-offs:

▶ Develop models that can detect patterns with cycles, but run
in O(n) time on sparse graphs.

▶ Analyze the expressivity of the multi-layers version of the
proposed model.
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Homomorphism Convolution Layer 3

 Basic definitions and ideas:

▶ A graph homomorphism from F to G is a mapping from
V (F ) to V (G) that preseves their structures.

▶ Graph homomorphism counts vectors from a collection of
graphs F ’s to G and H can be used to distinguish G and H.

 Our proposal:

▶ Specify F ’s collection of interest (cycles of lengths up to 6,
cliques, etc.), then enumerate all these homorphism mappings.

▶ Aggregate the transformed features along the mapping to get
a single homomorphism convolution layer:

hom((F •, µ), (G•, x)) =
∑

π∈Hom(F •,G•)

∏
p∈V (F •)

µp(xπ(p))
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Expressivity of Deep Homomorphism Network (DHN) 4

Let P ℓ be a series of patterns, and (G, x), (G′, x′) be inputs.

Theorem 1 (Main Theorem)

DHN(x) =DHN(x′) iff hom(P ℓ, G) ̸= hom(P ℓ, G′), where P 0 is a
singleton and P ℓ are patterns obtained by attaching P to P ℓ−1.

attach
=

new pattern

 Stacking layers make the model exponentially expressive.

 DHN is a generalization of 1-WL when P is the single-edge.
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Complexity, Implementation, and Experiments 5

 Complexity: DHN runs in the same time complexity as
computing hom(P,G), i.e., O(n) if G is sparse and P is tree-like.
This is true for real-world applications.

 Implementation: Homomorphism mappings for each unit
pattern can be precomputed and stored similar to edge list.

#params CSL EXP SR25 ENZYMES PROTEINS

MPNN (4 layers) 27k 0 0 0 54.6 ± 4.5 72.0 ± 4.0
PPGN (4 layers) 96k 100 100 0 58.2 ± 5.7 77.2 ± 3.7
I2-GNN (4 layers) 143k 100 100 100 - -
N2-GNN (4 layers) 355k 100 100 100 - -

DHN–(C2:4) 5k 100 50 0 64.3 ± 5.5 76.5 ± 3.0
DHN–(C2:5) 7k 100 81 0 63.7 ± 5.4 77.0 ± 3.2
DHN–(C2:10) 27k 100 98 0 58.0 ± 5.3 78.5 ± 2.5
DHN–(C2K3:5) 7k 100 50 53 63.3 ± 5.5 76.0 ± 2.7

DHN–(C2:4, C2) 8k 100 50 0 64.4 ± 5.9 77.1 ± 2.8
DHN–(C2:5, C2) 11k 100 99 0 62.0 ± 5.5 77.0 ± 2.5
DHN–(C2:5, C2:5) 36k 100 99 0 59.9 ± 5.2 76.7 ± 3.3
DHN–(C5:10, C2) 27k 100 100 0 63.5 ± 6.1 78.2 ± 3.3
DHN–(C2K3:5, C2K3:5) 36k 100 100 100 57.5 ± 6.6 77.4 ± 3.4
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Conclusion 6

 Implication of our main theorem: Let k be the tree-width of
pattern P . Then DHN is:

▶ Strictly more expressive than 1-WL if P contains a single-edge
pattern,

▶ Incomparable with k′-WL for k′ < k,

▶ Less expressive than k-WL

▶ See our manuscript for comparison with other GNN models.

 Conclusion and future work:

▶ Stacking homomorphism layers leads to powerful models

▶ Future work will study how graph pooling and attention can
help realizing the potential of DHN.
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