# Deep Homomorphism Network Expressivity through stacking homomorphism layers



Takanori Maehara & Hoang NT Roku & UTokyo

NeurIPS 2024







Our work is motivated by the complexity-expressivity trade-offs:



Our work is motivated by the complexity-expressivity trade-offs:

Develop models that can detect patterns with cycles, but run in O(n) time on sparse graphs.



Our work is motivated by the complexity-expressivity trade-offs:

- Develop models that can detect patterns with cycles, but run in O(n) time on sparse graphs.
- Analyze the expressivity of the multi-layers version of the proposed model.



- Basic definitions and ideas:
  - ► A graph homomorphism from F to G is a mapping from V(F) to V(G) that preseves their structures.

- Basic definitions and ideas:
  - ► A graph homomorphism from F to G is a mapping from V(F) to V(G) that preseves their structures.
  - ► Graph homomorphism counts vectors from a collection of graphs *F*'s to *G* and *H* can be used to distinguish *G* and *H*.

- Basic definitions and ideas:
  - ► A graph homomorphism from F to G is a mapping from V(F) to V(G) that preseves their structures.
  - ► Graph homomorphism counts vectors from a collection of graphs *F*'s to *G* and *H* can be used to distinguish *G* and *H*.
- Our proposal:

- Basic definitions and ideas:
  - ► A graph homomorphism from F to G is a mapping from V(F) to V(G) that preseves their structures.
  - ▶ Graph homomorphism counts vectors from a collection of graphs F's to G and H can be used to distinguish G and H.
- Our proposal:
  - Specify F's collection of interest (cycles of lengths up to 6, cliques, etc.), then enumerate all these homorphism mappings.

- Basic definitions and ideas:
  - ► A graph homomorphism from F to G is a mapping from V(F) to V(G) that preseves their structures.
  - ▶ Graph homomorphism counts vectors from a collection of graphs F's to G and H can be used to distinguish G and H.

#### Our proposal:

- Specify F's collection of interest (cycles of lengths up to 6, cliques, etc.), then enumerate all these homorphism mappings.
- Aggregate the transformed features along the mapping to get a single homomorphism convolution layer:

$$\hom((F^{\bullet},\mu),(G^{\bullet},x)) = \sum_{\pi \in \operatorname{Hom}(F^{\bullet},G^{\bullet})} \prod_{p \in V(F^{\bullet})} \mu_p(x_{\pi(p)})$$

# Expressivity of Deep Homomorphism Network (DHN) 4

4

Let  $P^\ell$  be a series of patterns, and  $(G,x), (G^\prime,x^\prime)$  be inputs.

Theorem 1 (Main Theorem) DHN(x) = DHN(x') iff  $hom(P^{\ell}, G) \neq hom(P^{\ell}, G')$ , where  $P^{0}$  is a singleton and  $P^{\ell}$  are patterns obtained by attaching P to  $P^{\ell-1}$ .

### Expressivity of Deep Homomorphism Network (DHN)

Let  $P^{\ell}$  be a series of patterns, and (G, x), (G', x') be inputs.

Theorem 1 (Main Theorem) DHN(x) = DHN(x') iff  $hom(P^{\ell}, G) \neq hom(P^{\ell}, G')$ , where  $P^{0}$  is a singleton and  $P^{\ell}$  are patterns obtained by attaching P to  $P^{\ell-1}$ .



new pattern

# Expressivity of Deep Homomorphism Network (DHN)

4

Let  $P^\ell$  be a series of patterns, and  $(G,x), (G^\prime,x^\prime)$  be inputs.

Theorem 1 (Main Theorem) DHN(x) = DHN(x') iff  $hom(P^{\ell}, G) \neq hom(P^{\ell}, G')$ , where  $P^{0}$  is a singleton and  $P^{\ell}$  are patterns obtained by attaching P to  $P^{\ell-1}$ .



- Stacking layers make the model *exponentially* expressive.
- OHN is a generalization of 1-WL when P is the single-edge.

**Output** Complexity: DHN runs in the same time complexity as computing hom(P,G), i.e., O(n) if G is sparse and P is tree-like. This is true for real-world applications.

**9** Complexity: DHN runs in the same time complexity as computing hom(P,G), i.e., O(n) if G is sparse and P is tree-like. This is true for real-world applications.

Implementation: Homomorphism mappings for each unit pattern can be precomputed and stored similar to edge list.

**!** Complexity: DHN runs in the same time complexity as computing hom(P,G), i.e., O(n) if G is sparse and P is tree-like. This is true for real-world applications.

Implementation: Homomorphism mappings for each unit pattern can be precomputed and stored similar to edge list.

|                                | #params | CSL | EXP | SR25 | ENZYMES      | PROTEINS     |
|--------------------------------|---------|-----|-----|------|--------------|--------------|
| MPNN (4 layers)                | 27k     | 0   | 0   | 0    | $54.6\pm4.5$ | $72.0\pm4.0$ |
| PPGN (4 layers)                | 96k     | 100 | 100 | 0    | $58.2\pm5.7$ | $77.2\pm3.7$ |
| I <sup>2</sup> -GNN (4 layers) | 143k    | 100 | 100 | 100  | -            | -            |
| N <sup>2</sup> -GNN (4 layers) | 355k    | 100 | 100 | 100  | -            | -            |
| DHN-(C2:4)                     | 5k      | 100 | 50  | 0    | $64.3\pm5.5$ | $76.5\pm3.0$ |
| $DHN-(C_{2:5})$                | 7k      | 100 | 81  | 0    | $63.7\pm5.4$ | $77.0\pm3.2$ |
| $DHN-(C_{2:10})$               | 27k     | 100 | 98  | 0    | $58.0\pm5.3$ | $78.5\pm2.5$ |
| $DHN-(C_2K_{3:5})$             | 7k      | 100 | 50  | 53   | $63.3\pm5.5$ | $76.0\pm2.7$ |
| $DHN-(C_{2:4}, C_2)$           | 8k      | 100 | 50  | 0    | $64.4\pm5.9$ | $77.1\pm2.8$ |
| $DHN-(C_{2:5}, C_2)$           | 11k     | 100 | 99  | 0    | $62.0\pm5.5$ | $77.0\pm2.5$ |
| $DHN-(C_{2:5}, C_{2:5})$       | 36k     | 100 | 99  | 0    | $59.9\pm5.2$ | $76.7\pm3.3$ |
| $DHN-(C_{5:10}, C_2)$          | 27k     | 100 | 100 | 0    | $63.5\pm6.1$ | $78.2\pm3.3$ |
| $DHN-(C_2K_{3:5}, C_2K_{3:5})$ | 36k     | 100 | 100 | 100  | $57.5\pm6.6$ | $77.4\pm3.4$ |



**(**) Implication of our main theorem: Let k be the tree-width of pattern *P*. Then DHN is:

- Strictly more expressive than 1-WL if P contains a single-edge pattern,
- Incomparable with k'-WL for k' < k,
- ► Less expressive than *k*-WL
- See our manuscript for comparison with other GNN models.
- Conclusion and future work:
  - Stacking homomorphism layers leads to powerful models
  - Future work will study how graph pooling and attention can help realizing the potential of DHN.

# Thank you for listening!

