

DiffuLT: Diffusion for Long-tail Recognition Without External Knowledge

Jie Shao Jianxin Wu* Ke Zhu Hanxiao Zhang National Key Laboratory for Novel Software Technology, Nanjing University, China School of Artificial Intelligence, Nanjing University, China

Introduction

- long-tail classification.
- Key Findings:

• **Objective:** Balance long-tailed datasets without external resources. • Method: Use a diffusion model trained solely on the long-tail dataset to generate samples, improving

• Improving generative model performance boosts classifier accuracy. • Most impactful generated samples: AID (Approximately In-Distribution). • **Proposed Pipeline:** DiffuLT (Diffusion model for Long-Tail recognition): • Step 1: Initial training of feature extractor and diffusion model with supervision for AID generation. • Step 2: Generate samples to balance the dataset. • Step 3: Retrain classifier on enriched dataset with reduced synthetic sample impact.

Introduction

Contributions

• **DiffuLT**

- **AID samples**

• first to tackle long-tail recognition by synthesizing images with diffusion models

• Blend information from head and tail classes • play a key role in boosting classifier accuracy • Loss function that steers the diffusion model to generate more AID samples • Experiments on CIFAR10-LT, CIFAR100-LT, and ImageNet-LT

Method

Table 1: FID of different generation models and their corresponding classifiers' accuracy.

		
Model	FID	Acc. (%)
Baseline DDPM CBDM ($\tau = 3$) CBDM ($\tau = 2$) CBDM ($\tau = 1$)	- 7.76 7.42 6.82 5.86	38.3 43.8 44.8 46.0 46.6

Figure 2: Visualization of generated samples for class 90 in feature space using t-SNE. The associated model is indicated in the upper-left corner.

Method

$d_{i} = \|f_{i} - f_{o}\|_{2} : \begin{cases} d_{i} \leq d_{f}, \\ d_{f} < d_{i} \leq 2d_{f}, \\ d_{i} > 2d_{f}, \end{cases}$

Skyscraper

Table 3: Quantities, overall classifier enhancement, and average improvement per sample for different groups of data generated by diffusion model.

ID AID	Group	$\ \mathcal{D}_{gen}\ $	Acc. (%)	$\Delta Acc / \ \mathcal{D}_{gen} \ $	p_h	p_{AID}	Acc _t (%)
OOD	Baseline ID AID OOD	- 21,511 11,886 5,756	38.3 44.2 45.2 36.2	2.75×10^{-4} 5.78×10^{-4} -3.61×10^{-4}	- 0 40 80 100	- 25.8 33.2 35.7 39.1	25.0 26.0 29.7 32.5 32.8

Train

Figure 3: Examples of three groups of generated samples.

Table 4: Diffusion trained with varying proportions of head class data and the corresponding results for tail classes.

Whale

Method

• AID loss:

• Weighted cross entropy:

$$\frac{\sqrt{1-\bar{\alpha}_T}}{\sqrt{1-\bar{\alpha}_t}} \|\varphi_0(\boldsymbol{x}_0) - \varphi_0(\boldsymbol{x}_0 + \boldsymbol{\epsilon}_t)\|$$

$$L_{\text{AID}} = \alpha \mathbb{E}_{t \sim [1,T], \boldsymbol{x}_0, \epsilon_t} \| d_t$$

 $L_{\text{cls}} = -\sum_{(x,y,y_g)\in\mathcal{D}\cup\mathcal{D}_{\text{gen}}} (\omega y_g + (1-y_g)) \log \frac{\exp(f_{\varphi,y}(x))}{\sum_{i=1}^M \exp(f_{\varphi,c_i}(x))},$

$-\epsilon_{\theta}(\boldsymbol{x}_t, t, y))\|_2,$

 $-\frac{3}{2}d_{f}\|^{2}.$

Method – Stage 3

Method FID	p_{ID} p_{AID}	p_{OOD}	Acc. (%)	Method	Kept	G-Num	Acc. (%)
DDPM 7.76 CBDM 5.86 Ours 5.37	 39.1 21.2 44.8 36.3 40.7 50.1 	39.7 18.9 9.2	43.8 46.6 49.7	CBDM CBDM CBDM Ours	All AID ID & AID All	39,153 108,684 48,414 39,153	46.6 48.1 47.1 49.7

Table 5: FID of diffusion model, proportion of Table 6: Methods and types of retained samples, samples, and corresponding classifier accuracy pre-filtering counts, and classification accuracy.

Table 7: Results on CIFAR100-LT and CIFAR10-LT datasets. The imbalance ratio r is set to 100, 50 and 10. The highest-performing results are in bold, with the second-best in underline. Additionally, we present the results for different groups (many, medium, and few) in CIFAR100-LT with r = 100.

Method

CE Focal Loss LDAM-DR cRT Kang BBN Zhou RIDE (3 ex CAM-BS Z MisLAS Z DiVE He et CMO Park SAM Rang CUDA Ahn CSA Shi et ADRW Wa H2T Li et a DiffuLT DiffuLT + DiffuLT + I

	CIFAR100-LT		CIFAR10-LT			Statistics			
	100	50	10	100	50	10	Many	Med.	Few
	38.3	43.9	55.7	70.4	74.8	86.4	65.2	37.1	9.1
Lin et al. [2017]	38.4	44.3	55.8	70.4	76.7	86.7	65.3	38.4	8.1
W Cao et al. [2019a]	42.0	46.6	58.7	77.0	81.0	88.2	61.5	41.7	20.2
et al. [2019]	42.3	46.8	58.1	75.7	80.4	88.3	64.0	44.8	18.1
et al. [2020a]	42.6	47.0	59.1	79.8	82.2	88.3	-	-	-
(perts) Wang et al. [2020]	48.0	-	-	-	-	-	68.1	49.2	23.9
Zhang et al. [2021a]	41.7	46.0	-	75.4	81.4	-	-	-	-
hong et al. [2021b]	47.0	52.3	63.2	82.1	85.7	90.0	-	-	-
t al. [2021]	45.4	51.1	62.0	-	-	-	-	-	-
et al. [2022]	47.2	51.7	58.4	-	-	-	70.4	42.5	14.4
wani et al. [2022]	45.4	-	-	81.9	-	-	64.4	46.2	20.8
n et al. [2023]	47.6	51.1	58.4	-	-	-	67.3	50.4	21.4
t al. [2023b]	46.6	51.9	62.6	82.5	86.0	90.8	64.3	49.7	18.2
ng et al. [2024b]	46.4	-	61.9	83.6	-	90.3	-	-	-
al. [2023]	48.9	53.8	-	-	-	-	-	-	-
	51.5	56.3	63.8	84.7	86.9	90.7	69.0	51.6	29.7
BBN	51.9	5 <u>6.7</u>	64.0	85.0	87.2	90.9	69.5	51.9	30.2
RIDE (3 experts)	52.4	56.9	64.2	85.3	87.3	<u>90.9</u>	<u>70.3</u>	52.1	30.7

Table 8: Results on ImageNet-LT. We deploy ResNet-10 and ResNet-50 as classifier backbones. Top-performing results are highlighted in bold, with second-best outcomes underlined.

- CE Foca
- OLT
- cRT RID
- MisI
- CM(SAM
- CUE
- CSA
- ADF
- Diffu
- Diffu

	ResNet-10	ResNet-50			
	All	All	Many	Med.	Few
	34.8	41.6	64.0	33.8	5.8
al Loss Lin et al. [2017]	30.5	-	-	-	-
R Liu et al. [2019b]	35.6	-	-	-	-
Kang et al. [2019]	41.8	47.3	58.8	44.0	26.1
E (3 experts) Wang et al. [2020]	45.9	54.9	<u>66.2</u>	51.7	34.9
LAS Zhong et al. [2021b]	_	52.7	-	-	-
O Park et al. [2022]	_	49.1	67.0	42.3	20.5
M Rangwani et al. [2022]		53.1	62.0	52.1	34.8
DA Ahn et al. [2023]	_	51.4	63.1	48.0	31.1
A Shi et al. [2023b]	42.7	49.1	62.5	46.6	24.1
RW Wang et al. [2024b]	-	54.1	62.9	52.6	37.1
uLT	50.4	56.4	63.3	55.6	<u>39.4</u>
uLT + RIDE (3 experts)	51.1	56.9	64.1	55.8	39.9

Table 9: Ablation experiments to verify the
effect of each module.Table 10: Performance with different
weights ω and hyper-parameter α .

D	Filt.	Weight	Acc. (%)	ω	Acc. (%)	$\mid \alpha$	Acc. (%)
	\checkmark		38.3 46.6 49.7 50.3	0 0.1 0.3 0.5 0.7	38.3 49.2 51.5 50.1 50.3	0 0.1 0.5 1.0 2.0	38.3 49.7 49.5 48.3 45.1
	\checkmark	\checkmark	51.5	1.0	50.3	4.0	43.3

Conclusion

- Key Contributions:
- Impact:
- Limitations & Future Work:
 - speeds.

• Novel Approach: Proposed a data-centric method using AID samples for long-tail classification.

• Developed an AID-focused diffusion model to enrich datasets. • Demonstrated the critical role of AID samples in boosting classifier accuracy.

• Provides a robust framework without needing external data. • Adaptable to various performance-critical applications.

• Current method is time-consuming; future work will focus on optimizing training and generation

